Gallium nitride (GaN) is one of the most important semiconductor materials in modern electronics. While GaN films are routinely deposited by chemical vapor deposition at around 1000 °C, low-temperature routes for GaN deposition need to be better understood. Herein, we present an atomic layer deposition (ALD) process for GaN-based on triethyl gallium (TEG) and ammonia plasma and show that the process can be improved by adding a reactive pulse, a “B-pulse” between the TEG and ammonia plasma, making it an ABC-type pulsed process. We show that the material quality of the deposited GaN is not affected by the B-pulse, but that the film growth per ALD cycle increases when a B-pulse is added. We suggest that this can be explained by the removal of ethyl ligands from the surface by the B-pulse, enabling a more efficient nitridation by the ammonia plasma. We show that the B-pulsing can be used to enable GaN deposition with a thermal ammonia pulse, albeit of x-ray amorphous films.

1.
S.
Banerjee
,
A. A. I.
Aarnink
, and
D. J.
Gravesteijn
, and
A. Y.
Kovalgin
,
J. Phys. Chem. C
123
,
23214
(
2019
).
2.
K.
Park
,
M. A.
Stroscio
, and
C.
Bayram
,
J. Appl. Phys.
121
,
245109
(
2017
).
3.
H.
Hu
,
B.
Zhang
,
L.
Liu
,
D.
Xu
,
Y.
Shao
,
Y.
Wu
, and
X.
Hao
,
Crystals
10
,
141
(
2020
).
4.
C.
Ozgit
,
I.
Donmez
,
M.
Alevli
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
30
,
01A124
(
2012
).
5.
S.
Kizir
,
A.
Haider
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
34
,
041511
(
2016
).
6.
M.
Alevli
,
A.
Haider
,
S.
Kizir
,
S. A.
Leghari
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
34
,
01A137
(
2016
).
7.
S.
Banerjee
,
A. J.
Onnink
,
S.
Dutta
,
A. A. I.
Aarnink
,
D. J.
Gravesteijn
, and
A. Y.
Kovalgin
,
J. Phys. Chem. C
122
,
29567
(
2018
).
8.
P.
Rouf
,
N. J.
O’Brien
,
S. C.
Buttera
,
I.
Martinovic
,
B.
Bakhit
,
E.
Martinsson
,
J.
Palisaitis
,
C.-W.
Hsu
, and
H.
Pedersen
,
J. Mater. Chem. C
8
,
8457
(
2020
).
9.
J. H.
Kim
,
H. G.
Choi
,
M.-W.
Ha
,
H. J.
Song
,
C. H.
Roh
,
J. H.
Lee
,
J. H.
Park
, and
C.-K.
Hahn
,
Jpn. J. Appl. Phys.
49
,
04DF05
(
2010
).
10.
P.
Rouf
,
P.
Sukkaew
,
L.
Ojamäe
, and
H.
Pederen
,
J. Phys. Chem. C
124
,
14176
(
2020
).
11.
M.
Mayer
,
W.
Eckstein
,
H.
Langhuth
,
F.
Schiettekatte
, and
U.
Von Toussaint
,
Nucl. Instrum. Methods Phys. Res., Sect. B
269
,
3006
(
2011
).
12.
P.
Ström
,
P.
Petersson
,
M.
Rubel
, and
G.
Possnert
,
Rev. Sci. Instrum.
87
,
103303
(
2016
).
13.
K. S.
Janson
,
CONTES
(
Uppsala University
,
Sweden
,
2004
).
14.
K.
Arstila
,
J.
Julin
,
M. I.
Laitinen
,
J.
Aalto
,
T.
Konu
,
S.
Kärkkäinen
,
S.
Rahkonen
,
M.
Raunio
,
J.
Itkonen
,
J. P.
Santanen
,
T.
Tuovinen
and
T.
Sajavaara
,
Nucl. Instrum. Methods Phys. Res., Sect. B
331
,
34
(
2014
).
15.
Y.
Zhang
,
H. J.
Whitlow
,
T.
Winzell
,
I. F.
Bubb
,
T.
Sajavaara
,
K.
Arstila
, and
J.
Keinonen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
149
,
477
(
1999
).
16.
M. A.
Arvizu
,
R. T.
Wen
,
D.
Primetzhofer
,
J. E.
Klemberg-Sapieha
,
L.
Martinu
,
G. A.
Niklasson
, and
C. G.
Granqvist
,
Appl. Mater. Interfaces
7
,
26387
(
2015
).
17.
H. Y.
Qu
,
D.
Primetzhofer
,
M. A.
Arvizu
,
Z.
Qiu
,
U.
Cindemir
,
C. G.
Granqvist
, and
G. A.
Niklasson
,
Appl. Mater. Interfaces
9
,
42420
(
2017
).
18.
J. F.
Ziegler
,
M. D.
Ziegler
and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
19.
U.
Kroll
,
J.
Meier
,
A.
Shah
,
S.
Mikhailov
, and
J.
Weber
,
J. Appl. Phys.
80
,
4971
(
1996
).
20.
P.
Deminskyi
,
A.
Haider
,
A.
Ovsianitsky
,
A.
Tsymbalenko
,
D.
Kotov
,
V.
Matkivskyi
,
N.
Liakhova
,
V.
Osinsky
, and
N.
Biyikli
, in
IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO)
,
Kyiv
19–21 April 2016 (IEEE, Kiev, Ukraine,
2016
), p.
128
.
21.
J. T.
Titantah
and
D.
Lamoen
,
Diam. Relat. Mater.
16
,
581
(
2007
).
22.
A.
Stegmüller
,
P.
Rosenowa
, and
R.
Tonner
,
Phys. Chem. Chem. Phys.
16
,
17018
(
2014
).
You do not currently have access to this content.