Initiated chemical vapor deposition (iCVD) can be used to deposit thin polymer films on a variety of substrates. In this work, the monomer precursor was introduced at an oblique angle to the substrate using an inlet extension, and the pattern of the resulting polymer film was studied as a function of deposition time, substrate temperature, monomer flow rate, reactor pressure, and vapor flow angle. The polymerizations of n-butyl acrylate, methacrylic acid, and 2-hydroxyethyl methacrylate were examined to determine the generality of the trends across several monomers. It was found that the monomer flow rate significantly affected the pattern of the deposited polymer by shifting the location of the thickest point in the films. Increasing the deposition time, decreasing the substrate temperature, and increasing the reactor pressure all increased the polymer deposition rate consistent with conventional iCVD; however, the pattern of the deposited polymer did not vary with these parameters. Computational analysis was used to determine how the inlet extension affects the pressure and velocity profiles within the reactor. The data demonstrate that the introduction of a monomer precursor at an oblique angle can be used to pattern polymer films during iCVD.

1.
S. G.
Im
and
K. K.
Gleason
,
AIChE J.
57
,
276
(
2011
).
2.
S. H.
Baxamusa
and
K. K.
Gleason
,
Chem. Vap. Depos.
14
,
313
(
2008
).
3.
S. H.
Baxamusa
,
S. G.
Im
, and
K. K.
Gleason
,
Phys. Chem. Chem. Phys.
11
,
5227
(
2009
).
4.
C.
Cheng
and
M.
Gupta
,
Ind. Eng. Chem. Res.
57
,
11675
(
2018
).
5.
C.
Cheng
and
M.
Gupta
,
Beilstein J. Nanotechnol.
8
,
1629
(
2017
).
6.
P. D.
Haller
,
C. A.
Flowers
, and
M.
Gupta
,
Soft Matter
7
,
2428
(
2011
).
7.
M.
Gupta
and
K. K.
Gleason
,
Langmuir
22
,
10047
(
2006
).
8.
K. K. S.
Lau
and
K. K.
Gleason
,
Macromolecules
39
,
3695
(
2006
).
9.
K. K. S.
Lau
and
K. K.
Gleason
,
Macromolecules
39
,
3688
(
2006
).
10.
G.
Ozaydin-Ince
and
K. K.
Gleason
,
J. Vac. Sci. Technol. A
27
,
1135
(
2009
).
11.
M. M.
Hawkeye
and
M. J.
Brett
,
J. Vac. Sci. Technol. A
25
,
1317
(
2007
).
12.
13.
C. H.
Chiu
,
P.
Yu
,
C. H.
Chang
,
C. S.
Yang
,
M. H.
Hsu
,
H. C.
Kuo
, and
M. A.
Tsai
,
Opt. Express
17
,
21250
(
2009
).
14.
M. D.
Gasda
,
G. A.
Eisman
, and
D. J.
Gall
,
J. Electrochem. Soc.
157
,
B437
(
2010
).
15.
W. J.
Khudhayer
,
A. U.
Shaikh
, and
T.
Karabacak
,
Nanosci. Nanotechnol. Lett.
4
,
999
(
2012
).
16.
G. K.
Kannarpady
,
K. R.
Khedir
,
H.
Ishihara
,
J.
Woo
,
O. D.
Oshin
, and
S.
Trigwell
,
ACS Appl. Mater. Interfaces
3
,
2332
(
2011
).
17.
M. K.
Dawood
,
H.
Zheng
,
N. A.
Kurniawan
,
K. C.
Leong
,
Y. L.
Foo
, and
R.
Rajagopalan
,
Soft Matter
8
,
3549
(
2012
).
18.
A.
Barranco
,
A.
Borras
,
A. R.
Gonzalez-Elipe
, and
A.
Palmero
,
Prog. Mater. Sci.
76
,
59
(
2016
).
19.
K.
Robbie
,
J. C.
Sit
, and
M. J.
Brett
,
J. Vac. Sci. Technol. A
16
,
1115
(
1998
).
20.
S.
Sarkar
and
S. K.
Pradhan
,
Surf. Eng.
35
,
982
(
2019
).
21.
R. K.
Khan
,
A. A.
Farghaly
,
T. A.
Silva
,
D.
Ye
, and
M. M.
Collinson
,
ACS Appl. Nano. Mater.
2
,
1562
(
2019
).
22.
T.
An
,
X.
Deng
,
Y.
Gao
,
S.
Liu
,
C.
Dou
, and
J.
Ju
,
Mater. Lett.
216
,
147
(
2018
).
23.
S.
Pursel
,
M. W.
Horn
,
M. C.
Demirel
, and
A.
Lakhtakia
,
Polymer
46
,
9544
(
2005
).
24.
N. A.
Malvadkar
,
M. J.
Hancock
,
K.
Sekeroglu
,
W. J.
Dressick
, and
M. C.
Demirel
,
Nat. Mater.
9
,
1023
(
2010
).
25.
E. M.
Benetti
,
M. K.
Gunnewiek
,
C. A.
van Blitterswijk
,
G. J.
Vancso
, and
L.
Moroni
,
J. Mater. Chem. B.
4
,
4244
(
2016
).
26.
L.
Li
,
Y.
Zhu
,
B.
Li
, and
C.
Gao
,
Langmuir
24
,
13632
(
2008
).
27.
K. E.
Roskov
,
T. H.
Epps III
,
B. C.
Berry
,
S. D.
Hudson
,
M. S.
Tureau
, and
M. J.
Fasolka
,
J. Comb. Chem.
10
,
966
(
2008
).
28.
J. C.
Meredith
,
A. P.
Smith
,
A.
Karim
, and
E. J.
Amis
,
Macromolecules
33
,
9747
(
2000
).
29.
X.
Li
and
B. D.
Vogt
,
Polymer
50
,
4182
(
2009
).
30.
M.
Luo
,
J. E.
Seppala
,
J. N. L.
Albert
,
R. L.
Lewis III
,
N.
Mahadevapuram
,
G. E.
Stein
, and
T. H.
Epps III
,
Macromolecules
46
,
1803
(
2013
).
31.
J. M.
Rathfon
,
R. W.
Cohn
,
A. J.
Crosby
,
J. R.
Rothstein
, and
G. N.
Tew
,
Macromolecules
44
,
5436
(
2011
).
32.
K. G.
Yager
,
B. C.
Berry
,
K.
Page
,
D.
Patton
,
A.
Karim
, and
E. J.
Amis
,
Soft Matter
5
,
622
(
2009
).
33.
Crane Co.
, Flow of Fluids Through Valves, Fittings and Pipe, Technical Paper No. 410 (TP 410) (Crane Co., 1988).
34.
W. E.
Tenhaeff
and
K. K.
Gleason
,
Adv. Funct. Mater.
18
,
979
(
2008
).
35.
T.
DebRoy
,
K.
Tankala
,
W. A.
Yardbrough
, and
R.
Messier
,
J. Appl. Phys.
68
,
2424
(
1990
).
36.
37.
L. J.
Clancy
,
Aerodynamics
(
Pitman
,
London
,
1979
).
38.
T. S.
O’Donovan
and
D. B.
Murray
,
Int. J. Heat Mass Transfer
51
,
6169
(
2008
).
39.
M.
Gupta
and
K. K.
Gleason
,
Thin Solid Films
515
,
1579
(
2006
).
40.
G.
Chen
,
M.
Gupta
,
K.
Chan
, and
K. K.
Gleason
,
Macromol. Rapid Commun.
28
,
2205
(
2007
).
41.
A. C.
Jones
and
M. L.
Hitchman
,
Chemical Vapour Deposition Precursors, Processes and Applications
(
Royal Society of Chemistry
,
Cambridge
,
2009
).
42.
D.
Dandy
and
J.
Yun
,
J. Mater. Res.
12
,
1112
(
1997
).
43.
N.
Curle
,
The Laminar Boundary Layer Equations
(
Courier Dover
,
New York
,
2017
).
44.
A.
Mishra
,
H.
Yadav
,
L.
Djenidi
, and
A.
Agrawal
,
Exp. Fluids
61
,
90
(
2020
).
45.
R.
Gardon
and
J. C.
Akfirat
,
Int. J. Heat Mass Transfer
8
,
1262
(
1965
).
You do not currently have access to this content.