We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.

1.
C. J.
Powell
,
Microsc. Today
24
,
16
(
2016
).
2.
A.
Jablonski
and
C. J.
Powell
,
Surf. Sci. Rep.
47
,
33
(
2002
).
3.
V. I.
Nefedov
and
I. S.
Nefedova
,
J. Electron Spectrosc.
107
,
131
(
2000
).
4.
J. J.
Yeh
and
I.
Lindau
,
Atom. Data Nucl. Data
32
,
1
(
1985
).
5.
J. H.
Scofield
,
J. Electron Spectrosc.
8
,
129
(
1976
).
6.
M.
Baker
,
Nature
533
,
353
(
2016
).
7.
D. R.
Baer
and
M. H.
Engelhard
,
J. Surf. Anal.
26
,
94
(
2019
).
8.
M. R.
Linford
 et al,
Microsc. Microanal.
26
,
1
(
2020
).
9.
International Organization for Standardization
,
ISO 15472:2010—Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales
(International Organization for Standardization,
Geneva
,
2010
).
10.
International Organization for Standardization
,
ISO 24237:2005—Surface Chemical Analysis—X-ray Photoelectron Spectroscopy—Repeatability and Constancy of Intensity Scale
(International Organization for Standardization,
Geneva
,
2005
).
11.
L. T.
Weng
,
G.
Vereecke
,
M. J.
Genet
,
P.
Bertrand
, and
W. E. E.
Stone
,
Surf. Interface Anal.
20
,
179
(
1993
).
12.
R.
Hesse
,
P.
Streubel
, and
R.
Szargan
,
Surf. Interface Anal.
37
,
589
(
2005
).
13.
R. C.
Wicks
and
N. J. C.
Ingle
,
Rev. Sci. Instrum.
80
,
053108
(
2009
).
14.
J.
Trigueiro
,
W.
Lima
,
N.
Bundaleski
, and
O. M. N. D.
Teodoro
,
J. Electron Spectrosc.
222
,
122
(
2018
).
15.
B.
Gruzza
,
P.
Bondot
,
A.
Porte
,
C.
Jardin
, and
G.
Gergely
,
Acta Phys. Pol. A
81
,
159
(
1992
).
16.
C. S.
Hemminger
,
T. A.
Land
,
A.
Christie
, and
J. C.
Hemminger
,
Surf. Interface Anal.
15
,
323
(
1990
).
17.
J.
Osterwalder
,
M.
Sagurton
,
P. J.
Orders
,
C. S.
Fadley
,
B. D.
Hermsmeier
, and
D. J.
Friedman
,
J. Electron Spectrosc.
48
,
55
(
1989
).
18.
M.
Holzweber
,
A.
Lippitz
,
R.
Hesse
,
R.
Denecke
,
W. S. M.
Werner
, and
W. E. S.
Unger
,
J. Electron Spectrosc.
233
,
51
(
2019
).
19.
M. P.
Seah
,
J. Electron Spectrosc.
71
,
191
(
1995
).
20.
M. P.
Seah
,
Surf. Interface Anal.
20
,
243
(
1993
).
21.
M. P.
Seah
and
G. C.
Smith
,
Surf. Interface Anal.
15
,
751
(
1990
).
22.
A. G.
Shard
and
S. J.
Spencer
,
Surf. Interface Anal.
51
,
618
(
2019
).
23.
A. G.
Shard
,
Surf. Interface Anal.
46
,
175
(
2014
).
24.
B. P.
Reed
,
S. J.
Spencer
, and
A. G.
Shard
, “VAMAS TWA 2, 2019, sub-project A27—Intensity calibration for XPS instruments using low-density poly(ethylene)—protocol for analysis,” NPL Report AS 100, National Physical Laboratory, Teddington, UK, 2019.
25.
A.
Herrera-Gomez
,
J. Electron Spectrosc.
182
,
81
(
2010
).
26.
A. G.
Shard
and
B. P.
Reed
,
J. Vac. Sci. technol. A
38
,
063209
(
2020
).
27.
M. P.
Seah
,
I. S.
Gilmore
, and
S. J.
Spencer
,
J. Electron Spectrosc.
104
,
73
(
1999
).
28.
A. G.
Shard
,
J. Vac. Sci. Technol. A
38
,
041201
(
2020
).
29.
See supplementary material at https://doi.org/10.1116/6.0000577 for (S1) Protocol for VAMAS interlaboratory study circulated to participants; (S2) Table showing important experimental information, percentage values of Δ (%) and Σ (%), and comments which describe issues or observations with the participants’ datasets or direct feedback from the participants; (S2 continued) Figures showing participants’ transmission functions calculated from LDPE and gold; (S3) Supporting figures including: a graphical representation of Ri, Δ, and Σ from Eqs. (2) and (3); and transmission functions calculated at NPL using LDPE prepared with differing surface topographies.

Supplementary Material

You do not currently have access to this content.