This review discusses critical aspects of patterning phase change materials (PCMs), including dry etching, wet clean, and encapsulation, as they dictate the reliability and functionality of the phase change random access memory devices. Specifically, alloys of germanium–antimony–tellurium are used as a model system, and the importance of PCM composition control, critical dimension control, high fidelity pattern transfer, and a system level of ambient control to avoid oxidation that can alter the materials’ functionality are highlighted. The research findings motivate the development of a state-of-the-art integrated system that combines dry etch, wet clean, and encapsulation into one platform to realize consistent and successful patterning of PCMs for future generations of the memory devices.

1.
G. W.
Burr
 et al.,
IEEE J. Emerg. Sel. Topics Circ. Sys.
6
,
146
(
2016
).
2.
M. K.
Qureshi
,
V.
Srinivasan
, and
J. A.
Rivers
, “
Scalable high performance main memory system using phase-change memory technology
” in
Proceedings of the 36th Annual International Symposium on Computer Architecture
, Austin, TX, 20–24 June 2009 (ACM,
2009
), pp.
24
33
.
3.
A.
Sebastian
,
M.
Le Gallo
,
G. W.
Burr
,
S.
Kim
,
M.
BrightSky
, and
E.
Eleftheriou
,
J. Appl. Phys.
124
,
111101
(
2018
).
4.
5.
G. W.
Burr
 et al.,
Adv. Phys. X
2
,
89
(
2017
).
6.
S. W.
Fong
,
C. M.
Neumann
, and
H. S. P.
Wong
,
IEEE Trans. Electron Devices
64
,
4374
(
2017
).
7.
S. R.
Ovshinsky
,
Phys. Rev. Lett
21
,
1450
(
1968
).
8.
S.
Lai
,
2003 IEEE International Electron Devices Meeting
, Washington, DC, 8–10 December 2003 (
IEEE
,
New York
,
2003
), p.
10.1.1
.
9.
D.
Kau
, et al., “
A stackable cross point phase change memory
,”
2009 IEEE International Electron Devices Meeting (IEDM)
, Baltimore, MD, 7–9 December 2009 (IEEE, New York,
2009
), pp.
1
4
.
10.
J.
Feng
,
Y.
Zhang
,
B.
Qiao
,
Y.
Lai
,
Y.
Lin
,
B.
Cai
,
T.
Tang
, and
B.
Chen
,
Appl. Phys. A
87
,
57
(
2007
).
11.
S.
Privitera
,
E.
Rimini
,
C.
Bongiorno
,
A.
Pirovano
, and
R.
Bez
,
Nucl. Instrum. Methods Phys. Res. B
257
,
352
(
2007
).
12.
X.
Zhou
 et al.,
Appl. Phys. Lett.
101
,
142104
(
2012
).
13.
S.
Privitera
,
E.
Rimini
, and
R.
Zonca
,
Appl. Phys. Lett.
85
,
3044
(
2004
).
14.
C.
Schell
,
G.
Wicker
, and
J.
Maimon
, “Arsenic-containing variable resistance materials,” U.S. patent 8,217,379 (10 July
2012)
.
15.
K.-J.
Choi
,
S.-M.
Yoon
,
N.-Y.
Lee
,
S.-Y.
Lee
,
Y.-S.
Park
,
B.-G.
Yu
, and
S.-O.
Ryu
,
Thin Solid Films
516
,
8810
(
2008
).
16.
K.
Wang
,
C.
Steimer
,
D.
Wamwangi
,
S.
Ziegler
,
M.
Wuttig
,
J.
Tomforde
, and
W.
Bensch
,
Microsyst. Technol.
13
,
203
(
2007
).
17.
S.
Wei
,
H.
Zhu
,
K.
Chen
,
D.
Xu
,
J.
Li
,
F.
Gan
,
X.
Zhang
,
Y.
Xia
, and
G.
Li
,
Appl. Phys. Lett.
98
,
231910
(
2011
).
18.
G.
Wang
 et al.,
J. Phys. D Appl. Phys.
45
,
375302
(
2012
).
19.
M.
Kang
 et al., “
PRAM cell technology and characterization in 20nm node size
,”
2011 International Electron Devices Meeting
, Washington, DC, 5-7 December 2011 (IEEE, New York,
2011
), pp.
3.1.1
3.1.4
.
20.
H.-S. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J. P.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K. E.
Goodson
,
Proc. IEEE
98
,
2201
(
2010
).
21.
G. W.
Burr
 et al.,
J. Vac. Sci. Technol. B
28
,
223
(
2010
).
22.
G.
Atwood
, "
Current and emerging memory technology landscape
,"
Flash Memory Summit
, Santa Clara, CA, 9–11 August 2011 (IEEE, New York,
2011
), pp.
9
11
.
23.
H.-S. P.
Wong
and
S.
Salahuddin
,
Nat. Nanotechnol.
10
,
191
(
2015
).
24.
G. W.
Burr
,
R. S.
Shenoy
,
K.
Virwani
,
P.
Narayanan
,
A.
Padilla
,
B.
Kurdi
, and
H.
Hwang
,
J. Vac. Sci. Technol. B
32
,
040802
(
2014
).
25.
S.
Raoux
 et al.,
IBM J. Res. Dev.
52
,
465
(
2008
).
26.
L.
Van Pieterson
,
M.
Lankhorst
,
M.
Van Schijndel
,
A.
Kuiper
, and
J.
Roosen
,
J. Appl. Phys.
97
,
083520
(
2005
).
27.
P.
Noé
,
C.
Vallée
,
F.
Hippert
,
F.
Fillot
, and
J.-Y.
Raty
,
Semicond. Sci. Technol.
33
,
013002
(
2017
).
28.
S.
Guerin
,
B.
Hayden
,
D. W.
Hewak
, and
C.
Vian
,
ACS Comb. Sci.
19
,
478
(
2017
).
29.
S.-K.
Kang
,
J.
Oh
,
B.
Park
,
S.
Kim
,
J.
Lim
,
G.
Yeom
,
C.
Kang
, and
G.
Min
,
Appl. Phys. Lett.
93
,
043126
(
2008
).
30.
S.-K.
Kang
,
M.-H.
Jeon
,
J.-Y.
Park
,
M. S.
Jhon
, and
G.-Y.
Yeom
,
Jpn. J. Appl. Phys.
50
,
086501
(
2011
).
31.
J.
Li
 et al.,
Appl. Surf. Sci.
378
,
163
(
2016
).
32.
J. W.
Park
,
D.
San Kim
,
W. O.
Lee
,
J. E.
Kim
,
H.
Choi
,
O.
Kwon
,
S.
Chung
, and
G. Y.
Yeom
,
ECS J. Solid State Sci. Technol.
8
,
P341
(
2019
).
33.
M.
Shen
,
T.
Lill
,
J.
Hoang
,
S.
Chiou
,
D.
Qian
,
A.
Routzahn
,
J.
Chen
,
A.
Dulkin
,
J.
Sims
,
A.
McKerrow
, and
R.
Dylewicz
, “
Meeting the challenges in patterning phase change materials for next generation memory devices
,”
AVS 66th International Symposium and Exhibition 2019
,
Columbus, OH, 20-25 October 2019 (American Vacuum Society, New York, NY
,
2019
).
34.
J.
Washington
 et al.,
J. Appl. Phys.
109
,
034502
(
2011
).
35.
S.-K.
Kang
,
M.
Jeon
,
J.
Park
,
G.
Yeom
,
M.
Jhon
,
B.
Koo
, and
Y.
Kim
,
J. Electrochem. Soc.
158
,
H768
(
2011
).
36.
Y.
Canvel
,
S.
Lagrasta
,
C.
Boixaderas
,
S.
Barnola
,
Y.
Mazel
,
K.
Dabertrand
, and
E.
Martinez
,
Microelectron. Eng.
221
,
111183
(
2020
).
37.
Y.
Canvel
,
S.
Lagrasta
,
C.
Boixaderas
,
S.
Barnola
,
Y.
Mazel
, and
E.
Martinez
,
J. Vac. Sci. Technol. A
37
,
031302
(
2019
).
38.
Intel
, “Intel and micron produce breakthrough memory technology,” Intel News Release,
2015
.
39.
“Introduction to the Micron X100, the world’s fastest SSD,” Micron Product Release,
2019
, see: https://www.micron.com/products/advanced-solutions/3d-xpoint-technology/x100.
40.
“Intel Optane Technology and Intel QLC NAND Technology come together on a single drive,” Intel Newsroom Release,
2019
, see: https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/.
41.
N.
Gang
 et al., “
Superb endurance and appropriate Vth of PCM pillar cell using buffer layer for 3D cross-point memory
,”
2019 IEEE 11th International Memory Workshop (IMW)
, Monterey, CA, 12–15 May 2019 (IEEE, New York,
2019
), pp.
1
-
4
.
42.
Z.
Song
 et al., “
High endurance phase change memory chip implemented based on carbon-doped Ge₂Sb₂Te₅ in 40 nm node for embedded application
,”
2018 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, 1–5 December 2018 (IEEE, New York,
2018
), pp.
27.5.1
-
27.5.4
.
43.
U. R.
Evans
,
An Introduction to Metallic Corrosion
, 2nd ed. (
Arnold
, London, UK,
1963
).
44.
J. E.
House
and
K. A.
House
,
Descriptive Inorganic Chemistry
(Academic, Cambridge, MA,
2015
).
45.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics 85
(
CRC
, Boca Raton, FL,
2004
).
46.
W.
Haynes
, “
CRC Handbook of Chemistry and Physics (Internet Version 2011)
” (
Taylor Francis Group
,
Boca Raton, FL
, 2011).
47.
M. J.
O'Neil
,
The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals
(
RSC Publishing
, Whitehouse Station, NJ,
2013
).
48.
Hydrogen telluride, Air Liquide, Birmingham, UK, Oct 11, 2010, see: https://www.msds-al.co.uk/assets/file_assets/SDS_074-CLP-HYDROGEN%20TELLURIDE.pdf.
50.
Arsenic pentafluoride, Matheson Tri-Gas Inc., Basking Ridge, NJ, Dec 11, 2008, see: https://www.mathesongas.com/pdfs/msds/00223860.pdf.
51.
Trimethylarsine, American Elements, Los Angeles, CA, May 15, 2015, see: https://www.americanelements.com/trimethylarsine-593-88-4.
52.
Trimethylantimony, American Elements, Los Angeles, CA, May 15, 2015, see: https://www.americanelements.com/trimethylantimony-594-10-5.
54.
Selenium fluoride, American Elements, Los Angeles, CA, May 15, 2015, see: https://www.americanelements.com/selenium-fluoride-13465-66-2.
56.
Dimethylselenide, American Elements, Los Angeles, CA, May 15, 2015, see: https://www.americanelements.com/dimethylselenide-593-79-3.
57.
S.-M.
Yoon
,
N.-Y.
Lee
,
S.-O.
Ryu
,
Y.-S.
Park
,
S.-Y.
Lee
,
K.-J.
Choi
, and
B.-G.
Yu
,
Jpn. J. Appl. Phys
44
,
L869
(
2005
).
58.
J.
Park
,
J.
Kim
,
D.-H.
Ko
,
Z.
Wu
,
D.
Ahn
,
S.
Park
, and
K.
Hwang
,
Thin Solid Films
616
,
502
(
2016
).
59.
E.
Chen
,
N.
Altieri
,
H.
Razavi
,
J.
Hoang
,
M.
Shen
,
T.
Lill
,
C.
Neumann
,
H.-S. P.
Wong
, and
J.
Chang
, “
Hydrogen plasma etching of GST
” (unpublished).
60.
L.
Yashina
,
R.
Püttner
,
V.
Neudachina
,
T.
Zyubina
,
V.
Shtanov
, and
M.
Poygin
,
J. Appl. Phys.
103
,
094909
(
2008
).
61.
N.-K.
Min
,
A.
Efremov
,
Y.-H.
Kim
,
M.
Kim
,
H.-H.
Park
,
H. W.
Lee
, and
K.-H.
Kwon
,
J. Vac. Sci. Technol. A
26
,
205
(
2008
).
62.
G.
Cullen
,
J.
Amick
, and
D.
Gerlich
,
J. Electrochem. Soc.
109
,
124
(
1962
).
63.
I.
Denysenko
,
S.
Xu
,
J.
Long
,
P.
Rutkevych
,
N.
Azarenkov
, and
K.
Ostrikov
,
J. Appl. Phys.
95
,
2713
(
2004
).
64.
T.
Happ
 et al., “
Novel one-mask self-heating pillar phase change memory
,”
2006 Symposium on VLSI Technology, 2006 Digest of Technical Papers
, Honolulu, HI, 13–17 June 2006 (IEEE, New York,
2006
), pp.
120
121
.
65.
M.
Breitwisch
 et al., “
Novel lithography-independent pore phase change memory
,”
2007 IEEE Symposium on VLSI Technology
, Kyoto, Japan, 12–14 June 2007 (IEEE, New York,
2007
), pp.
100
101
.
66.
M. K.
Anam
and
E. C.
Ahn
,
Nanotechnology
30
,
495202
(
2019
).
67.
B.
Anthony
,
L.
Breaux
,
T.
Hsu
,
S.
Banerjee
, and
A.
Tasch
,
J. Vac. Sci. Technol. B
7
,
621
(
1989
).
68.
R.
Thomas
,
M.
Mantini
,
R.
Rudder
,
D.
Malta
,
S.
Hattangady
, and
R.
Markunas
,
J. Vac. Sci. Technol. A
10
,
817
(
1992
).
69.
M.
Mohri
,
H.
Kakinuma
,
M.
Sakamoto
, and
H.
Sawai
,
Jpn. J. Appl. Phys.
29
,
L1932
(
1990
).
70.
D.
Davies
,
L.
Kline
, and
W.
Bies
,
J. Appl. Phys.
65
,
3311
(
1989
).
71.
L. E.
Kline
,
W. D.
Partlow
, and
W. E.
Bies
,
J. Appl. Phys.
65
,
70
(
1989
).
72.
D. A.
Alman
,
D. N.
Ruzic
, and
J.
Brooks
,
Phys. Plasmas
7
,
1421
(
2000
).
73.
M.
Hayashi
,
NATO ASI Ser. B Phys.
1990
,
220
(
1990
).
74.
T.
Nakano
,
H.
Toyoda
, and
H.
Sugai
,
Jpn. J. Appl. Phys.
30
,
2912
(
1991
).
75.
A.
Engelhardt
and
A.
Phelps
,
Phys. Rev.
131
,
2115
(
1963
).
76.
M.
Jiménez-Redondo
,
M.
Cueto
,
J. L.
Doménech
,
I.
Tanarro
, and
V. J.
Herrero
,
RSC Adv.
4
,
62030
(
2014
).
77.
I.
Mendez
,
F. J.
Gordillo-Vázquez
,
V. J.
Herrero
, and
I.
Tanarro
,
J. Phys. Chem. A
110
,
6060
(
2006
).
78.
D.
Bedford
and
D.
Smith
,
Int. J. Mass Spectrom.
98
,
179
(
1990
).
79.
W. C.
Ellis
,
C. R.
Lewis
,
A. P.
Openshaw
, and
P. B.
Farnsworth
,
J. Am. Soc. Mass Spectrom.
27
,
1539
(
2016
).
80.
K.
Tachibana
,
M.
Nishida
,
H.
Harima
, and
Y.
Urano
,
J. Phys. D Appl. Phys.
17
,
1727
(
1984
).
81.
D.
Herrebout
,
A.
Bogaerts
,
M.
Yan
,
R.
Gijbels
,
W.
Goedheer
, and
E.
Dekempeneer
,
J. Appl. Phys.
90
,
570
(
2001
).
82.
H.
Chatham
,
D.
Hils
,
R.
Robertson
, and
A.
Gallagher
,
J. Chem. Phys.
79
,
1301
(
1983
).
83.
M.
Heintze
,
M.
Magureanu
, and
M.
Kettlitz
,
J. Appl. Phys.
92
,
7022
(
2002
).
84.
V.
Schulz-von Der Gathen
,
J.
Röpcke
,
T.
Gans
,
M.
Käning
,
C.
Lukas
, and
H.
Döbele
,
Plasma Sources Sci. Technol.
10
,
530
(
2001
).
85.
B.
Jeansannetas
 et al.,
J. Solid State Chem.
146
,
329
(
1999
).
86.
T.
Lee
and
S.
Elliott
,
Phys. Rev. B Condens. Matter.
84
,
094124
(
2011
).
87.
S.
Djurović
and
J.
Roberts
,
J. Appl. Phys.
74
,
6558
(
1993
).
88.
G.
Dan
 et al.,
J. Semicond.
36
,
056001
(
2015
).
89.
L.
Wang
,
B.
Liu
,
Z.
Song
,
S.
Feng
,
Y.
Xiang
, and
F.
Zhang
,
J. Electrochem. Soc.
156
,
H699
(
2009
).
90.
A.
Votta
,
F.
Pipia
,
E.
Ravizza
,
S.
Spadoni
,
S.
Rossini
,
L.
Brattico
, and
M.
Alessandri
,
Solid State Phenom.
187
,
37
(
2012
).
91.
G. S.
Pokrovski
and
J.
Schott
,
Geochim. Cosmochim. Acta
62
,
3413
(
1998
).
92.
J.
Zheng
,
A.
Iijima
, and
N.
Furuta
,
J. Anal. At. Spectrom.
16
,
812
(
2001
).
93.
E.
Gourvest
,
B.
Pelissier
,
C.
Vallée
,
A.
Roule
,
S.
Lhostis
, and
S.
Maitrejean
,
J. Electrochem. Soc.
159
,
H373
(
2012
).
94.
L.
Šimurka
,
R.
Čtvrtlík
,
T.
Roch
,
T.
Turutoğlu
,
S.
Erkan
,
J.
Tomaštík
, and
K.
Bange
,
Int. J. Appl. Glass Sci.
9
,
403
(
2018
).
95.
A.
Attaf
,
M.
Benkhedir
, and
M.
Aida
,
Phys. B Condens. Matter
355
,
270
(
2005
).
96.
B.
Cossou
,
S.
Jacques
,
G.
Couégnat
,
S.
King
,
L.
Li
,
W.
Lanford
,
G.
Bhattarai
,
M.
Paquette
, and
G.
Chollon
,
Thin Solid Films
681
,
47
(
2019
).
97.
N.
Sharma
,
M.
Hooda
, and
S.
Sharma
,
J. Mater.
2014
,
1
8
(
2014
).
98.
K.
Cil
, “Temperature dependent characterization and crystallization dynamics of Ge2Sb2Te5 thin films and nanoscale structures,” Ph.D. dissertation (University of Connecticut,
2015
).
99.
S.
Zhu
and
A.
Nakajima
,
Jpn. J. Appl. Phys.
46
,
7699
(
2007
).
100.
K.
Park
,
W.-D.
Yun
,
B.-J.
Choi
,
H.-D.
Kim
,
W.-J.
Lee
,
S.-K.
Rha
, and
C. O.
Park
,
Thin Solid Films
517
,
3975
(
2009
).
101.
S.
Riedel
,
J.
Sundqvist
, and
T.
Gumprecht
,
Thin Solid Films
577
,
114
(
2015
).
102.
H. C.
Knoops
,
K.
De Peuter
, and
W.
Kessels
,
Appl. Phys. Lett.
107
,
014102
(
2015
).
103.
A.-M.
Andringa
,
A.
Perrotta
,
K.
de Peuter
,
H. C.
Knoops
,
W. M.
Kessels
, and
M.
Creatore
,
ACS Appl. Mater. Interfaces
7
,
22525
(
2015
).
104.
H. C.
Knoops
,
E. M.
Braeken
,
K.
de Peuter
,
S. E.
Potts
,
S.
Haukka
,
V.
Pore
, and
W. M.
Kessels
,
ACS Appl. Mater. Interfaces
7
,
19857
(
2015
).
105.
C. K.
Ande
,
H. C.
Knoops
,
K.
de Peuter
,
M.
van Drunen
,
S. D.
Elliott
, and
W. M.
Kessels
,
J. Phys. Chem. Lett.
6
,
3610
(
2015
).
106.
S. W.
King
,
J. Vac. Sci. Technol. A
29
,
041501
(
2011
).
107.
108.
J.-S.
Park
,
S.-W.
Kang
, and
H.
Kim
,
J. Vac. Sci. Technol. B
24
,
1327
(
2006
).
109.
W.
Jang
,
H.
Jeon
,
H.
Song
,
H.
Kim
,
J.
Park
,
H.
Kim
, and
H.
Jeon
,
Phys. Status Solidi A
212
,
2785
(
2015
).
110.
D. H.
Triyoso
 et al.,
ECS J. Solid State Sci. Technol.
2
,
N222
(
2013
).
111.
X.
Meng
,
Y.-C.
Byun
,
H. S.
Kim
,
J. S.
Lee
,
A. T.
Lucero
,
L.
Cheng
, and
J.
Kim
,
Materials
9
,
1007
(
2016
).
112.
A. E.
Kaloyeros
,
F. A.
Jové
,
J.
Goff
, and
B.
Arkles
,
ECS J. Solid State Sci. Technol.
6
,
P691
(
2017
).
113.
Y. S.
Park
,
J. W.
Lim
,
W. S.
Yang
,
S. Y.
Lee
,
S. M.
Yoon
, and
B. G.
Yu
,
ECS Trans.
11
,
245
(
2007
).
114.
T.
Chong
and
H.
Koon
,
Jpn. J. Appl. Phys.
46
,
2211
(
2007
).
115.
D.
Krebs
,
S.
Raoux
,
C. T.
Rettner
,
G. W.
Burr
,
M.
Salinga
, and
M.
Wuttig
,
Appl. Phys. Lett.
95
,
082101
(
2009
).
116.
W.
Zhou
 et al.,
Appl. Phys. Lett.
105
,
243113
(
2014
).
117.
L.
Liu
,
W.-G.
Liu
,
N.
Cao
, and
C.-L.
Cai
,
Def. Technol.
9
,
121
(
2013
).
You do not currently have access to this content.