Imaging and small-spot (small area) XPS have become increasingly important components of surface chemical analysis during the last three decades, and its use is growing. Some ambiguity in the use of terminology, understanding of concepts, and lack of appropriate reference materials leads to confusing and not always reproducible data. In this paper, it is shown that by using existing knowledge, appropriate test specimens, and standardized approaches, problems of comparability and such reproducibility issues recently observed for XPS data reported in the scientific literature can be overcome. The standardized methods of ISO 18516:2019, (i) the straight-edge, (ii) the narrow-line, and (iii) the grating method, can be used to characterize and compare the lateral resolution achieved by imaging XPS instruments and are described by reporting examples. The respective measurements are made using new test specimens. When running an XPS instrument in the small-spot (small area) mode for a quantitative analysis of a feature of interest, the question arises as to what contribution to the intensity originates from outside the analysis area. A valid measurement approach to control the intensity from outside the nominal analysis area is also described. As always, the relevant resolution depends on the specific question that needs to be addressed. The strengths and limitations of methods defining resolution are indicated.

1.
D. R.
Baer
and
I. S.
Gilmore
,
J. Vac. Sci. Technol. A
36
,
068502
(
2018
).
2.
D. R.
Baer
 et al.,
J. Vac. Sci. Technol. A
37
,
031401
(
2019
).
3.
M.
Eglin
,
A.
Rossi
, and
N. D.
Spencer
,
Tribol. Lett.
15
,
199
(
2003
).
4.
A.
Rossi
,
M.
Eglin
,
F. M.
Piras
,
K.
Matsumoto
, and
N. D.
Spencer
,
Wear
256
,
578
(
2004
).
5.
D. R.
Baer
and
A. G.
Shard
,
J. Vac. Sci. Technol. A
38
,
031203
(
2020
).
6.
ISO
,
ISO/TR 19319:2013, Surface Chemical Analysis—Fundamental Approaches to Determination of Lateral Resolution and Sharpness in Beam-Based Methods
(
ISO
,
Geneva
,
2013
).
7.
M.
Senoner
and
W. E. S.
Unger
,
Surf. Interface Anal.
45
,
1313
(
2013
).
8.
ISO
,
ISO 18516:2019, Surface Chemical Analysis—Determination of Lateral Resolution and Sharpness in Beam-Based Methods With a Range From Nanometres to Micrometres
(
ISO
,
Geneva
,
2019
).
9.
W. E. S.
Unger
,
M.
Senoner
,
Th.
Wirth
,
S.
Bütefisch
, and
I.
Busch
,
J. Surf. Anal.
24
,
123
(
2017
).
10.
M.
Senoner
,
T.
Wirth
, and
W. E. S.
Unger
,
J. Anal. At. Spectrom.
25
,
1440
(
2010
).
11.
ASTM International
,
ASTM E1217—11, Standard Practice for Determination of the Specimen Area Contributing to the Detected Signal in Auger Electron Spectrometers and Some X-Ray Photoelectron Spectrometers
(
ASTM International
, West Conshohocken, PA,
2019
).
12.
D. R.
Baer
and
M. H.
Engelhard
,
Surf. Interface Anal.
29
,
766
(
2000
).
13.
C.
Passiu
,
A.
Rossi
,
L.
Bernard
,
D.
Paul
,
J.
Hammond
,
W. E. S.
Unger
,
N. V.
Venkataraman
, and
N. D.
Spencer
,
Langmuir
33
,
5657
(
2017
).
14.
W. E. S.
Unger
,
J. Vac. Sci. Technol. A
38
,
021201
(
2020
).
15.
ISO
,
ISO 22493, 2008 Microbeam Analysis—Scanning Electron Microscopy—Vocabulary
(
ISO
,
Geneva
,
2008
).
16.
M.
Senoner
 et al.,
Anal. Bioanal. Chem.
407
,
3211
(
2015
).
17.
M.
Senoner
and
W.
Unger
,
Surf. Interface Anal.
39
,
16
(
2007
).
18.
U.
Scheithauer
,
Surf. Interface Anal.
40
,
706
(
2008
).
19.
S.
Hutton
,
C.
Blomfield
, and
G.
Mishra
, Quantitative Lateral Resolution of the Kratos AXIS Ultra and AXIS Nova XPS Instruments, AVS 55th International Symposium & Exhibition Poster (2008), see: https://www.kratos.com/application-areas/application-downloads/lateral-resolution-AXIS-instruments (accessed 12 August 2020).
20.
See: http://www.casaxps.com/ (accessed 10 June 2020).
21.
See supplementary material at http://dx.doi.org/10.1116/6.0000398 for the layout of ETH and PTB prototype test specimens used in the VAMAS A22 project for a determination of lateral resolution and contributions from outside the analysis area, respectively; all Au 4f line scans across an Au bar in a gold finder-grid image and the 500 μm × 200 μm Ti box on the ETH test specimen using the KRATOS Axis Ultra DLD XPS instrument (straight-edge method); Au 4f line scans across the 2 μm Ti strip on the ETH prototype test specimen acquired using both instruments (narrow-line method); all the different Au 4f line scans across the consecutive gratings of Ti bars in Au on the ETH test specimen acquired using the KRATOS Axis Ultra DLD XPS instrument (grating method).

Supplementary Material

You do not currently have access to this content.