Our interest in introducing oxygen and/or nitrogen atoms in CH4/H2/Ar plasma mixtures by means of organic precursors in the place of CH4 or by partly substituting O2 or N2O for H2 and thereby controlling carbon deposition and surface passivation when etching HgCdTe under low substrate bias conditions is investigated in this study. Using in situ ellipsometry, in situ x-ray photoelectron spectroscopy, atomic force microscopy, and secondary electron microscopy (SEM), we show that nitromethane as a precursor and N2O substitution are attractive alternatives for the following: the absence of deposition although no bias is applied, equivalent postetch surface composition, and comparable performances in terms of etch rate and surface roughness for the latter. Such an approach could provide the soft dry etching conditions needed to reduce the pixel pitch of HgCdTe infrared photovoltaic detectors. The mechanisms that allow suppressing carbon deposition upon O2 or N2O substitution in CH4/H2/Ar plasmas are studied by combining plasma diagnostics (optical emission spectroscopy, actinometry, and ion flux measurements) and surface characterizations. First, using Si as a reference substrate, it is shown that deposition is suppressed whenever the O2 and N2O flow rate is half and twice that of CH4, respectively. Moreover, the study reveals that oxygen is the true etch reactant controlling the competition between film growth and etching in both substituted processes, whereas incorporation of nitrogen in the film upon N2O substitution favors its etching kinetics simultaneously. Second, on HgCdTe, deposition of a hydrocarbonitride film is observed at a low N2O/CH4 ratio (∼0.6). SEM and SEM-energy dispersive x-ray spectroscopy imaging suggest that the film nucleates and grows preferentially on regions where the Cd removal mechanisms happen to be less efficient. At a high N2O/CH4 ratio (∼4), oxidation of the HgCdTe surface is observed.

1.
G. L.
Hansen
,
J. L.
Schmidt
, and
T. N.
Casselman
,
J. Appl. Phys.
53
,
7099
(
2007
).
2.
A.
Rogalski
,
Infrared Phys. Technol.
50
,
240
(
2007
).
3.
M. A.
Kinch
,
State of the Art Infrared Detector Technology
(
SPIE
,
Bellingham
,
WA
,
2014
).
4.
J.
Baylet
 et al.,
J. Electron. Mater.
35
,
1153
(
2006
).
5.
E. P. G.
Smith
 et al.,
J. Electron. Mater.
35
,
1145
(
2006
).
6.
C. R.
Eddy
,
D.
Leonhardt
,
V. A.
Shamamian
,
J. R.
Meyer
,
C. A.
Hoffman
, and
J. E.
Butler
,
J. Electron. Mater.
28
,
347
(
1999
).
7.
R. C.
Keller
,
M.
Seelmann-Eggebert
, and
H. J.
Richter
,
J. Electron. Mater.
24
,
1155
(
1995
).
8.
J.
Baylet
 et al.,
J. Electron. Mater.
33
,
690
(
2004
).
9.
G.
Bahir
and
E.
Finkman
,
J. Vac. Sci. Technol. A
7
,
348
(
1989
).
10.
J. L.
Elkind
and
G. J.
Orloff
,
J. Vac. Sci. Technol. A
10
,
1106
(
1992
).
11.
L.
Liu
,
Y.
Chen
,
Z.
Ye
, and
R.
Ding
,
Infrared Phys. Technol.
90
,
175
(
2018
).
12.
C. R.
Eddy
,
E. A.
Dobisz
,
J. R.
Meyer
, and
C. A.
Hoffman
,
J. Vac. Sci. Technol. A
11
,
1763
(
1993
).
13.
J.
Kim
,
T. S.
Koga
,
H. P.
Gillis
,
M. S.
Goorsky
,
G. A.
Garwood
,
J. B.
Varesi
,
D. R.
Rhiger
, and
S. M.
Johnson
,
J. Electron. Mater.
32
,
677
(
2003
).
14.
R. C.
Keller
,
M.
Seelmann-Eggebert
, and
H. J.
Richter
,
Appl. Phys. Lett.
67
,
3750
(
1995
).
15.
F.
Boulard
,
J.
Baylet
, and
C.
Cardinaud
,
J. Vac. Sci. Technol. A
27
,
855
(
2009
).
16.
J. E.
Schramm
,
D. I.
Babic
,
E. L.
Hu
,
J. E.
Bowers
, and
J. L.
Merz
,
Proceedings of the IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM)
,
Santa Barbara, CA
, 27–31 March 1994 (
IEEE
,
New York
,
1994
), pp.
383
386
.
17.
T.
Suzuki
,
N.
Haneji
,
K.
Tada
,
Y.
Shimogaki
, and
Y.
Nakano
,
Jpn. J. Appl. Phys.
41
,
15
(
2002
).
18.
J. W.
Coburn
,
H. F.
Winters
, and
T. J.
Chuang
,
J. Appl. Phys.
48
,
3532
(
1977
).
19.
J. W.
Coburn
and
H. F.
Winters
,
J. Vac. Sci. Technol.
15
,
327
(
1978
).
20.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
21.
J. W.
Coburn
and
H. F.
Winters
,
J. Vac. Sci. Technol.
16
,
391
(
1979
).
22.
H. F.
Winters
and
J. W.
Coburn
,
Surf. Sci. Rep.
14
,
162
(
1992
).
23.
S.
Jacq
,
C.
Cardinaud
,
L.
Le Brizoual
, and
A.
Granier
,
Plasma Sources Sci. Technol.
22
,
055004
(
2013
).
24.
V.
Raballand
, “
Gravure en Plasma Dense Fluorocarboné de Matériaux Organosiliciés à Faible Constante Diélectrique (SiOCH,SiOCH Poreux). Etude D’un Procédé de Polarisation Pulsée
,”
Ph.D. thesis
(
Université de Nantes
,
2006
).
25.
N. St. J.
Braithwaite
,
J. P.
Booth
, and
G.
Cunge
,
Plasma Sources Sci. Technol.
5
,
677
(
1996
).
26.
J. W.
Coburn
,
J. Appl. Phys.
50
,
5210
(
1979
).
27.
B.
Pelliciari
,
J. Crystal Growth
86
,
146
(
1988
).
28.
O.
Gravrand
 et al.,
J. Electron. Mater.
42
,
3349
(
2013
).
29.
CasaXPS, see: casaXPS.com.
30.
R. W. B.
Pearse
and
A. G.
Gaydon
,
The Identification of Molecular Spectra
, 4th ed. (
Chapman and Hall
,
London
,
1976
).
31.
P.
Teulet
,
J. P.
Sarrette
, and
A. M.
Gomes
,
J. Quant. Spectrosc. Radiat. Transfer
62
,
549
(
1999
).
32.
National Institute of Standards and Technology (NIST)
,
Chemistry Webbook
, NIST Standard Reference Database No. 69, 2018.
33.
G. H.
Dieke
and
J. W.
Mauchly
,
Phys. Rev.
43
,
12
(
1933
).
34.
35.
C. O.
Laux
and
C. H.
Kruger
,
J. Quant. Spectrosc. Radiat. Transfer
48
,
9
(
1992
).
36.
B.
Rose
,
Spectroscopic Data Relative to Diatomic Molecules
(
Pergamon
,
Paris
,
1970
).
37.
National Institute of Standards and Technology (NIST)
,
Atomic Spectra Data Base
, NIST Standard Reference Database No. 78, version 5.7, 2019.
38.
S. A.
Mitchell
,
Astrophys. J.
105
,
1
(
1947
).
40.
C. E.
Moore
, National Standard Reference Data Series, NSRDS-NBS 3 (Sect. 7) (
1976
).
41.
O.
Langlois
,
L.
Stafford
,
J.
Margot
, and
M.
Chaker
,
Appl. Phys. Lett.
87
,
131503
(
2005
).
42.
G.
Cunge
,
R. L.
Inglebert
,
O.
Joubert
,
L.
Vallier
, and
N.
Sadeghi
,
J. Vac. Sci. Technol. B
20
,
2137
(
2002
).
43.
F.
Gaboriau
,
G.
Cartry
,
M.-C.
Peignon
, and
Ch.
Cardinaud
,
J. Phys. D Appl. Phys.
39
,
1830
(
2006
).
44.
N.
Hellgren
,
J.
Guo
,
Y.
Luo
,
C.
Såthe
,
A.
Agui
,
S.
Kashtanov
,
J.
Nordgren
,
H.
Ågren
, and
J.-E.
Sundgren
,
Thin Solid Films
471
,
19
(
2005
).
45.
S. E.
Rodil
and
S.
Muhl
,
Diamond Relat. Mater.
13
,
1521
(
2004
).
46.
J.
Pereira
,
I.
Géraud-Grenier
,
V.
Massereau-Guilbaud
,
André
Plain
, and
V.
Fernandez
,
Surf. Coat. Technol.
200
,
6414
(
2006
).
47.
B.
Angleraud
,
N.
Mubumbila
,
P. Y.
Tessier
,
V.
Fernandez
, and
G.
Turban
,
Diamond Relat. Mater.
10
,
1142
(
2001
).
48.
T. S.
Sun
,
S. P.
Buchner
, and
N. E.
Byer
,
J. Vac. Sci. Technol.
17
,
1067
(
1980
).
49.
B. H.
Erné
,
F.
Lefèvre
,
D.
Lorans
,
D.
Ballutaud
,
C.
Debiemme-Chouvy
,
J.
Vigneron
, and
A.
Etcheberrya
,
Appl. Surf. Sci.
175–176
,
579
(
2001
).
50.
G.
Badano
,
A.
Million
,
B.
Canava
,
P.
Tran-Van
, and
A.
Etcheberry
,
J. Electron. Mater.
36
,
1077
(
2007
).
51.
A.
Causier
,
I.
Gerard
,
M.
Bouttemy
,
A.
Etcheberry
,
C.
Pautet
,
J.
Baylet
, and
L.
Mollard
,
J. Electron. Mater.
40
,
1823
(
2011
).
52.
R.
Sporken
,
R.
Kiran
,
T.
Casselman
,
F.
Aqariden
,
S.
Velicu
,
Y.
Chang
, and
S.
Sivananthan
,
J. Electron. Mater.
38
,
1781
(
2009
).
53.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
PerkinElmer
, Eden Prairie,
1992
).
54.
R.
Nokhwal
,
V.
Srivastav
,
A.
Goyal
,
B. L.
Sharma
,
S. A.
Hashmi
, and
R. K.
Sharma
,
J. Electron. Mater.
46
,
6795
(
2017
).
You do not currently have access to this content.