Atomic layer deposition (ALD) is evolving beyond binary compounds to complex oxides and doped structures, taking advantage of the nanometer precision ALD provides. In practice, the development of complex ALD-processes usually means performing many ALD-runs, as success at first attempt is unlikely. One factor at a time methods, where only one factor is altered and the rest are kept constant, are most often chosen due to their intuitive communication of control. However, they do have several drawbacks, being slow, neglecting secondary effects, and are usually not randomized—meaning that errors that arise over time can easily be overlooked. We here dig into our statistical toolbox and show how design of experiments (DoE) can be used to efficiently develop an ALD-process to deposit crystalline, luminescent CaMoO4—a proposed material for optoelectronic applications, like light emitting diodes or as a host for solar down-converters. Using DoE enables screening for a wider range of deposition temperatures, pulsed composition, and annealing parameters, by only performing nine ALD-runs in our case. We moreover look into how these parameters affect crystallinity, composition, and the photoluminescence properties and use DoE to show which factors have the greatest effects on these properties. The work also lays out the basic theory of the DoE-field and how to implement DoE in developing ALD-processes, in general, to ease the usage of DoE for the ALD-community.

1.
M.
Getz
,
P.-A.
Hansen
,
M. A. K.
Ahmed
,
H.
Fjellvåg
, and
O.
Nilsen
,
Dalton Trans.
46
,
3008
(
2017
).
2.
M. N.
Getz
,
O.
Nilsen
, and
P.-A.
Hansen
,
Sci. Rep.
9
,
10247
(
2019
).
3.
J. E.
Bratvold
,
H. H.
Sønsteby
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Vac. Sci. Technol. A
37
,
021502
(
2019
).
4.
H. H.
Sønsteby
,
H.
Fjellvåg
, and
O.
Nilsen
,
Adv. Mater. Interfaces
4
,
1600903
(
2017
).
5.
O.
Nilsen
,
M.
Lie
,
H. F.
Fjellvåg
, and
A.
Kjekshus
, in
Growth of Oxides with Complex Stoichiometry by the ALD Technique, Exemplified by Growth of La1–xCaxMnO3, in Rare Earth Oxide Thin Films
, edited by
M.
Fanciulli
and
G.
Scarel
(
Springer Berlin Heidelberg
,
Berlin
,
2007
), pp.
87
100
.
6.
7.
F.
Yates
,
Biometrics
20
,
307
(
1964
).
8.
R. L.
Plackett
and
J. P.
Burman
,
Biometrika
33
,
305
(
1946
).
9.
N. R.
Draper
, in
Introduction to Box and Wilson (1951) on the Experimental Attainment of Optimum Conditions, in Breakthroughs in Statistics
, Springer Series in Statistics (Perspectives in Statistics), edited by
S.
Kotz
and
N. L.
Johnson
(
Springer New York
,
New York
,
NY
,
1992
), pp.
267
269
.
10.
G.
Box
and
D.
Behnken
,
Technometrics
2
,
455
(
1960
).
11.
S. R.
Coles
,
D. K.
Jacobs
,
J. O.
Meredith
,
G.
Barker
,
A. J.
Clark
,
K.
Kirwan
,
J.
Stanger
, and
N.
Tucker
,
Appl. Polym. Sci.
117
,
2251
(
2010
).
12.
A.
Nourbakhsh
,
B.
Ganjipour
,
M.
Zahedifar
, and
E.
Arzi
,
Nanotechnology
18
,
115715
(
2007
).
13.
F.
Niamh Mac
,
Y.
Ye
,
Q.
Runzhang
,
G.
Federico
, and
G.
Stefan
, e-print ChemRxiv (2019).
14.
D. M.
King
,
X.
Du
,
A. S.
Cavanagh
, and
A. W.
Weimer
,
Nanotechnology
19
,
445401
(
2008
).
15.
D. M.
King
,
S. I.
Johnson
,
J.
Li
,
X.
Du
,
X.
Liang
, and
A. W.
Weime
,
Nanotechnology
20,
195401
(
2009
).
16.
M.
Burke
,
A.
Blake
,
I. M.
Povey
,
M.
Schmidt
,
N.
Petkov
,
P.
Carolan
, and
A. J.
Quinn
,
J. Vac. Sci. Technol. A
32
,
031506
(
2014
).
17.
E.
Cavalli
,
P.
Boutinaud
,
R.
Mahiou
,
M.
Bettinelli
, and
P.
Dorenbos
,
Inorg. Chem.
49
,
4916
(
2010
).
18.
E.
Cavalli
,
P.
Boutinaud
, and
M.
Grinberg
,
J. Lumin.
169
,
450
(
2016
).
19.
P.
Boutinaud
,
E.
Pinel
,
M.
Oubaha
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
Opt. Mater.
28
,
9
(
2006
).
20.
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
J. Appl. Phys.
96
,
4923
(
2004
).
21.
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
Chem. Phys. Lett.
418
,
185
(
2006
).
22.
P.
Boutinaud
,
R.
Mahiou
,
E.
Cavalli
, and
M.
Bettinelli
,
J. Lumin.
122–123
,
430
(
2007
).
23.
X.
Li
,
Z.
Yang
,
L.
Guan
,
J.
Guo
,
Y.
Wang
, and
Q.
Guo
,
J. Alloys Compd.
478
,
684
(
2009
).
24.
J. H.
Ryu
,
J.-W.
Yoon
,
C. S.
Lim
,
W.-C.
Oh
, and
K. B.
Shim
,
J. Alloys Compd.
390
,
245
(
2005
).
25.
W. S.
Cho
,
M.
Yashima
,
M.
Kakihana
,
A.
Kudo
,
T.
Sakata
, and
M.
Yoshimura
,
J. Am. Ceram. Soc.
80
,
765
(
1997
).
26.
L.
Zhu
,
Y.
Mao
,
Q.
Chen
,
Y.
Zou
,
X.
Shen
, and
G.
Liao
,
J. Mater. Sci. Mater. Electron.
30
,
3639
(
2019
).
27.
A. P.
de Azevedo Marques
,
V. M.
Longo
,
D. M. A.
de Melo
,
P. S.
Pizani
,
E. R.
Leite
,
J. A.
Varela
, and
E.
Longo
,
J. Solid State Chem.
181
,
1249
(
2008
).
28.
O.
Nilsen
,
H.
Fjellvåg
, and
A.
Kjekshus
,
Thin Solid Films
450
,
240
(
2004
).
29.
J. N.
Kvalvik
,
J.
Borgersen
,
P.-A.
Hansen
, and
O.
Nilsen
,
J. Vac. Sci. Technol. A
38
,
042406
(
2020
).
30.
M.
Putkonen
and
L.
Niinistö
, “
Organometallic precursors for atomic layer deposition
,” in
Precursor Chemistry of Advanced Materials
, edited by
R. A.
Fischer
(
Springer Berlin Heidelberg
,
Berlin
,
2005
), pp.
125
145
.
31.
A.
Bertuch
,
G.
Sundaram
,
M.
Saly
,
D.
Moser
, and
R.
Kanjolia
,
J. Vac. Sci. Technol. A
32
,
01A119
(
2014
).
32.
K.
Hinkelmann
and
O.
Kempthorne
,
Introduction to Experimental Design. Design and Analysis of Experiments
(
John Wiley & Sons
,
Hoboken
,
NJ
,
2008
).
33.
G. S.
Pawley
,
J. Appl. Crystallogr.
14
,
357
(
1981
).
34.
K. K.
Sawant
,
V. P.
Mundada
, and
V. J.
Patel
,
J. Nanomed. Nanotechnol.
8
,
1000442
(
2017
).
35.
Á
Kukovecz
,
D.
Méhn
,
E.
Nemes-Nagy
,
R.
Szabó
, and
I.
Kiricsi
,
Carbon
43
,
2842
(
2005
).
36.
B.
Cao
,
L. A.
Adutwum
,
A. O.
Oliynyk
,
E. J.
Luber
,
B. C.
Olsen
,
A.
Mar
, and
J. M.
Buriak
,
ACS Nano
12
,
7434
(
2018
).
37.
J. I.
Goldstein
,
D. E.
Newbury
,
J. R.
Michael
,
N. W.
Ritchie
,
J. H. J.
Scott
, and
D. C.
Joy
,
Scanning Electron Microscopy and X-ray Microanalysis
(
Springer New York
,
New York
,
2017
), p.
12
.
38.
G. R.
Lachance
and
F.
Claisse
,
Quantitative X-ray Fluorescence Analysis Theory and Application
(
John Wiley & Sons
,
Hoboken
,
NJ
,
1995
), p.
7
.
39.
C. L.
Fu
,
X.
Wang
,
Y. Y.
Ye
, and
K. M.
Ho
,
Intermetallics
7
,
179
(
1999
).
40.
E.
Cavalli
,
F.
Angiuli
,
P.
Boutinaud
, and
R.
Mahiou
,
J. Solid State Chem.
185
,
136
(
2012
).
41.
E. V.
Sokolenko
,
V. M.
Zhukovskii
,
E. S.
Buyanova
, and
Y. A.
Krasnobaev
,
Inorg. Mater.
34
,
499
(
1998
).
43.
B. M.
Sinelkov
,
E. V.
Sokolenko
, and
V. Y.
Zvekov
,
Inorg. Mater.
32
,
999
(
1996
).
44.
See the supplementary material at https://doi.org/10.1116/6.0000327 for experimental setup and order, batching of ALD syntheses and annealing experiments, residuals vs experiment order and UV-VIS spectra of CaMoO4 on silica as deposited.

Supplementary Material

You do not currently have access to this content.