Gallium oxide (Ga2O3) thin films were laser ablation deposited on Si(100) substrates in vacuum, argon, and oxygen (O2) at different substrate temperatures by using the pulsed laser deposition technique. X-ray diffraction patterns showed that the films were crystallized in a mixed phase of β-Ga2O3 and Ga(OH)3. Data from scanning electron microscopy and atomic force microscopy showed that the major influence in the deposition conditions on the photoluminescence (PL) intensity was through changes in the particle morphology and surface topography of the films. The surface morphology studied using a field emission scanning electron microscope showed that the films were made of nanoparticles of spherical and cubic shapes at lower and higher temperatures, respectively. The energy-dispersive x-ray spectroscopy spectra confirmed the presence of the major elements Ga and O, with C coming from atmospheric hydrocarbons and Si from Si impurity in Ga2O3 and the substrate. The Si peak intensity was found to increase with the deposition temperature. X-ray photoelectron spectroscopy further confirmed the presence of Ga, O, C, Si, and N on the surface of the films. The PL spectrum excited using a 325 nm He-Cd laser showed nanoparticle shape driven tunable broadband emissions in the wavelength range between 350 and 750 nm. The comparison of the PL intensities of the films deposited in different atmospheres shows that the film deposited in O2 has the highest PL intensity.

1.
C.
Jin
,
S.
Park
,
H.
Kim
, and
C.
Lee
,
Sens. Actuators B Chem.
161
,
223
(
2012
).
2.
M.
Ogita
,
K.
Higo
,
Y.
Nakanishi
, and
Y.
Hatanaka
,
Appl. Surf. Sci.
175
,
721
(
2001
).
3.
T.
Sheng
,
X.-Z.
Liu
,
L.-X.
Qian
,
B.
Xu
, and
Y.-Y.
Zhang
,
Rare Met.
1
(
2015
).
4.
M.
Muruganandham
,
R.
Amutha
,
M. S. M. A.
Wahed
,
B.
Ahmmad
,
Y.
Kuroda
,
R. P. S.
Suri
,
J. J.
Wu
, and
M. E. T.
Sillanpää
,
J. Phys. Chem. C
116
,
44
(
2012
).
5.
K. L.
Chopra
,
S.
Major
, and
D. K.
Pandya
,
Thin Solid Films
102
,
1
(
1983
).
6.
S.
Yan
,
L.
Wan
,
Z.
Li
,
Y.
Zhou
, and
Z.
Zou
,
Chem. Commun.
46
,
6388
(
2010
).
7.
S.
Kumar
and
R.
Singh
,
Phys. Status Solidi RRL
7
,
781
(
2013
).
8.
G.
Blasse
and
A.
Bril
,
J. Phys. Chem. Solids
31
,
707
(
1970
).
9.
E. G.
Villora
,
K.
Hatanaka
,
H.
Odaka
,
T.
Sugawara
,
T.
Miura
,
H.
Fukumura
, and
T.
Fukuda
,
Solid State Commun.
127
,
385
(
2003
).
10.
T.
Harwig
and
F.
Kellendonk
,
J. Solid State Chem.
24
,
255
(
1978
).
11.
K.
Shimamura
,
E. G.
Víllora
,
T.
Ujiie
, and
K.
Aoki
,
Appl. Phys. Lett.
92
,
201914
(
2008
).
12.
S. B.
Cho
and
R.
Mishra
,
Appl. Phys. Lett.
112
,
162101
(
2018
).
13.
S. I.
Stepanov
,
V. I.
Nikolaev
,
V. E.
Bougrov
, and
A. E.
Romanov
,
Rev. Adv. Mater. Sci.
44
,
63
(
2016
).
14.
Y.
Yao
,
L. A. M.
Lyle
,
J. A.
Rokholt
,
S.
Okur
,
G. S.
Tompa
,
T.
Salagaj
,
N.
Sbrockey
,
R. F.
Davis
, and
L. M.
Porter
,
ECS Trans.
80
,
191
(
2017
).
15.
H.
Son
,
Y.-J.
Choi
,
J.
Hwang
, and
D.-W.
Jeon
,
ECS J. Solid State Sci.
8
,
Q3024
(
2019
).
16.
H.
Sun
,
K.-H.
Li
,
C. G. T.
Castanedo
,
S.
Okur
,
G. S.
Tompa
,
T.
Salagaj
,
S.
Lopatin
,
A.
Genovese
, and
X.
Li
,
Cryst. Growth Des.
18
,
2370
(
2018
).
17.
M. D.
Welch
and
A. K.
Kleppe
,
Phys. Chem. Miner.
43
,
515
(
2016
).
18.
X.
Chen
,
F.
Ren
,
S.
Gu
, and
J.
Ye
,
Photonics Res.
7
,
381
(
2019
).
19.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
,
Ind. Eng. Chem.
45
,
819
(
1953
).
20.
H. H.
Tippins
,
Phys. Rev.
140
,
A316
(
1965
).
21.
Z.
Hajnal
,
J.
Miro
,
G.
Kiss
,
F.
Reti
,
P.
Deak
,
R. C.
Herndon
, and
J. M.
Kuperberg
,
J. Appl. Phys.
86
,
3792
(
1999
).
22.
M.
Jędrzejczyk
,
K.
Zbudniewek
,
J.
Rynkowski
,
V.
Keller
,
J.
Grams
,
A. M.
Ruppert
, and
N.
Keller
,
Environ. Sci. Pollut. Res.
24
,
26792
(
2017
).
23.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
,
J. Am. Chem. Soc.
74
,
719
(
1952
).
24.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
25.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B.
74
,
195123
(
2006
).
26.
J.
Ȧhman
,
G.
Svensson
, and
J.
Albertsson
,
Acta. Crystallogr. Sec. C
52
,
1336
(
1996
).
27.
Y.
Yang
,
J.
Zhang
,
S.
Hu
,
Y.
Wu
,
J.
Zhang
,
W.
Ren
, and
S.
Cao
,
Phys. Chem. Chem. Phys.
19
,
28928
(
2017
).
28.
H. Y.
Playford
,
A. C.
Hannon
,
E. R.
Barney
, and
R. I.
Walton
,
Chemistry
19
,
2803
(
2013
).
29.
A. W.
Laubengayer
and
H. R.
Engle
,
J. Am. Chem. Soc.
61
,
1210
(
1939
).
30.
M. R.
Lorenz
,
J. F.
Woods
, and
R. J.
Gambino
,
J. Phys. Chem. Solids
28
,
403
(
1967
).
31.
L.
Binet
and
D.
Gourier
,
J. Phys. Chem. Solids
59
,
1241
(
1998
).
32.
E. G.
Villora
,
K.
Shimamura
,
Y.
Yoshikawa
,
T.
Ujiie
, and
K.
Aoki
,
Appl. Phys. Lett.
92
,
202120
(
2008
).
33.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
97
,
142106
(
2010
).
34.
L.-W.
Chang
,
T.-Y.
Lu
,
Y.-L.
Chen
,
J.-W.
Yeh
, and
H. C.
Shih
,
Mater. Lett.
65
,
2281
(
2011
).
35.
J.
Jiang
,
J.
Zhang
,
J.
Li
, and
D.
Xu
,
Chem. Phys. Lett.
719
,
8
(
2019
).
36.
Y. P.
Song
,
H. Z.
Zhang
,
C.
Lin
,
Y. W.
Zhu
,
G. H.
Li
,
F. H.
Yang
, and
D. P.
Yu
,
Phys. Rev. B
69
,
075304
(
2004
).
37.
S. Y.
Lee
,
M.
Lee
, and
H. C.
Kang
,
Jpn. J. Appl. Phys.
55
,
095002
(
2016
).
38.
Y.
Berencén
,
Y.
Xie
,
M.
Wang
,
S.
Prucnal
,
L.
Rebohle
, and
S.
Zhou
,
Semicond. Sci. Technol.
34
,
035001
(
2019
).
39.
Codex International
, see https://codex-international.com/
40.
C.
Hu
and
H.
Teng
,
J. Phys. Chem. C.
114
,
20100
(
2010
).
41.
M.
Liu
,
B. Y.
Man
,
C. S.
Xue
,
H. Z.
Zhuang
,
H. C.
Zhu
,
X. Q.
Wei
, and
C. S.
Chen
,
Appl. Phys. A.
85
,
83
(
2006
).
42.
L.
Chen
, in
Pulsed Laser Deposition of Thin Films
, edited by
D. B.
Chrisey
and
G. K.
Hulber
(
Wiley
,
New York
,
1994
), p.
184
.
43.
S. N.
Ogugua
,
R. L.
Nyenge
,
P. T.
Sechogela
,
H. C.
Swart
, and
O. M.
Ntwaeaborwa
,
J. Vac. Sci. Technol. A.
34
,
021520
(
2016
).
44.
M.
Liu
,
B. Y.
Man
,
X. C.
Lin
,
X. Y.
Li
, and
C. S.
Chen
,
Appl. Surf. Sci.
253
,
9291
(
2007
).
45.
M.
Liu
,
X. Q.
Wei
,
Z. G.
Zhang
,
G.
Sun
,
C. S.
Chen
,
C. S.
Xue
,
H. Z.
Zhuang
, and
B. Y.
Man
,
Appl. Surf. Sci.
252
,
4321
(
2006
).
46.
P. H.
Le
and
C. W
.
Luo
, “
Thermoelectric and topological insulator bismuth chalcogenide thin films grown using pulsed laser deposition
,” in
Applications of Laser Ablation—Thin Film Deposition, Nanomaterial Synthesis and Surface Modification
, edited by
D.
Yang
(
InTech
,
Rijeka
,
2016
), pp.
55
84
.
47.
C. W.
Schneider
and
T.
Lippert
,
Laser ablation and thin film deposition
(
Paul Scherrer Institut
,
Villigen PSI
,
2010
).
48.
K.
Kato
,
F.
Dang
,
K.
Mimura
,
Y.
Kinemuchi
,
H.
Imai
,
S.
Wada
,
M.
Osada
,
H.
Haneda
, and
M.
Kuwabara
,
Adv. Powder Technol.
25
,
1401
(
2014
).
49.
50.
R.
Zhang
,
X.
Liu
,
L.
Shi
,
X.
Jin
,
Y.
Dong
,
K.
Li
,
X.
Zhao
,
Q.
Li
, and
Y.
Deng
,
Nanomaterials
9
,
76
(
2019
).
51.
C. W.
Schneider
,
M.
Esposito
,
I.
Marozau
,
K.
Conder
,
M.
Doebeli
,
Yi
Hu
,
M.
Mallepell
,
A.
Wokaun
, and
T.
Lippert
,
Appl. Phys. Lett.
97
,
192107
(
2010
).
52.
F.
Chiu
,
S.
Mondal
, and
T.
Pan
, “
Structural and electrical characteristics of alternative high-k dielectrics for CMOS applications
,” in
High-k Gate Dielectrics for CMOS Technology
, edited by
G.
He
and
Z.
Sun
(
Wiley
,
Weinheim
,
2012
), p.
119
.
53.
S. T. S.
Dlamini
,
H. C.
Swart
, and
O. M.
Ntwaeaborwa
,
Physica B
439
,
88
(
2014
).
54.
G.
Moldovan
,
M. J.
Roe
,
I.
Harrison
,
M.
Kappers
,
C. J.
Humphreys
, and
P. D.
Brown
,
Philos. Mag.
86
,
2315
(
2006
).
55.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
PerkinElmer
,
Eden Prairie, MN
,
1992
).
56.
X.
Liu
,
B.
Peng
,
W.
Zhang
,
J.
Zhu
,
X.
Liu
, and
M.
Wei
,
Materials
10
,
1377
(
2017
).
57.
X.
Liu
 et al.,
J. Alloys Compd.
636
,
191
(
2015
).
58.
P.
Song
,
Z.
Wu
,
X.
Shen
,
J.
Kang
,
Z.
Fang
, and
T. Y.
Zhang
,
Cryst. Eng. Comm.
19
,
625
(
2017
).
59.
W.
Wei
,
Z.
Qin
,
S.
Fan
,
Z.
Li
,
K.
Shi
,
Q.
Zhu
, and
G.
Zhang
,
Nanoscale Res. Lett.
7
,
562
(
2012
).
60.
T.
Susi
,
T.
Pichler
, and
P.
Ayala
,
J. Nanotechnol.
6
,
177
(
2015
).
61.
K.
Girija
,
S.
Thirumalairajan
,
V. R.
Mastelaro
, and
D.
Mangalaraj
,
J. Mater. Chem. A.
3
,
2617
(
2015
).
62.
P.
Nehla
,
C.
Ulrich
, and
R. S.
Dhaka
,
J. Alloys Compd.
776
,
379
(
2019
).
63.
H.
Yan
,
Y.
Huang
,
W.
Cui
,
Y.
Zhi
,
D.
Guo
,
Z.
Wu
,
Z.
Chen
, and
W.
Tang
,
Powder Diffr.
33
,
195
(
2018
).
64.
S.
Oswald
,
Encyclopedia of Analytical Chemistry
(Wiley, Toronto, Canada,
2013
).
65.
Vinod
Kumar
,
O. M.
Ntwaeaborwa
,
E.
Coetsee
, and
H. C.
Swart
,
J. Colloid. Interface. Sci.
474
,
129
(
2016
).
66.
K. A.
Willets
and
R. P. V.
Duyne
,
Annu. Rev. Phys. Chem.
58
,
267
(
2007
).
67.
S.
Catalán-Gómez
,
A.
Redondo-Cubero
,
F. J.
Palomares
,
F.
Nucciarelli
, and
J. L.
Pau
,
Nanotechnology
28
,
405705
(
2017
).
68.
S.
Butun
,
S.
Tongay
, and
K.
Aydin
,
Nano Lett.
15
,
2700
(
2015
).
69.
Y.
Zhang
,
B.
Cai
, and
B.
Jia
,
Nanomaterials
6
,
95
(
2016
).
70.
V. V.
Tomaev
,
V. A.
Polishchuk
,
T. A.
Vartanyan
, and
E. A.
Vasil’ev
,
Glass Phys. Chem.
45
,
238
(
2019
).
71.
S.
Xionglin
,
L.
Hongyu
,
H.
Shuang
,
Q.
Lingxuan
, and
L.
Xingzhao
,
Opto-Electron. Eng.
45
,
170728
(
2018
).
72.
E. G.
Villora
,
M.
Yamaga
,
T.
Inoue
,
S.
Yabasi
,
Y.
Mausi
,
T.
Sugawara
, and
T.
Fukuda
,
Jpn. J. Appl. Phys.
41
,
L622
(
2002
).
73.
X. T.
Zhou
,
F.
Heigl
,
J. Y. P.
Ko
,
M. W.
Murphy
,
J. G.
Zhou
,
T.
Regier
,
R. I. R.
Blyth
, and
T. K.
Sham
,
Phys. Rev. B
75
,
125303
(
2007
).
74.
T.
Harwig
,
F.
Kellendonk
, and
S.
Slappendel
,
J. Phys. Chem. Solids
39
,
675
(
1978
).
75.
E. G.
Villora
,
T.
Atou
,
T.
Sekiguchi
,
T.
Sugawara
,
M.
Kikuchi
, and
T.
Fukuda
,
Solid State Commun.
120
,
455
(
2001
).
76.
S.
Ismail-Beigi
and
S. G.
Louie
,
Phys. Rev. Lett.
95
,
156401
(
2005
).
You do not currently have access to this content.