In this work, a special focus is given to atomic layer etching (ALE) of metals, since this is a relatively new field but is expected to grow rapidly given the major advancements potentially enabled via metal incorporation throughout the manufacturing process of integrated circuits. The impact of John Coburn’s work on the development of ALE processes is analyzed with a focus on ion energy and the neutral-to-ion ratio. To realize atomic precision in removing etch-resistant materials with complex compositions or structures, the surface reactivity would replace etch rate as the parameter of interest to control the chemical contrast needed for selectivity. The desirable etching anisotropy dictates the usage of directional ions. John Coburn’s work on ion-enhanced etching of Si serves as an example that a fine control of ion energy and the neutral-to-ion ratio could be the gateway of reactivity control, which is demonstrated with recent progress on thermal-plasma ALE of Ni. The effect of surface reactivity is studied from first-principle atomistic calculations and confirms the experimental findings.

1.
Deloitte
,
Global Mobile Consumer Trends
, 2nd ed. (Deloitte Touche Tohmatsu Limited,
2017
).
2.
J. W.
Coburn
, paper presented at the APS Annual Gaseous Electronics Meeting Abstracts, October 22, San Francisco (
2003
).
3.
W.
Boullart
,
D.
Radisic
,
V.
Paraschiv
,
S.
Cornelissen
,
M.
Manfrini
,
K.
Yatsuda
,
E.
Nishimura
,
T.
Ohishi
, and
S.
Tahara
, paper presented at the Advanced Etch Technology for Nanopatterning II, April 16, San Jose (
2013
).
4.
A.
Paranjpe
,
B.
Druz
,
K.
Rook
, and
N.
Srinivasan
, Ion Beam Etching of STT-RAM Structures, US9978934B2, October 30,
2015
.
5.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
6.
T.
Matsuura
,
J.
Murota
,
Y.
Sawada
, and
T.
Ohmi
,
Appl. Phys. Lett.
63
,
2803
(
1993
).
7.
C.
Kauppinen
,
S. A.
Khan
,
J.
Sundqvist
,
D. B.
Suyatin
,
S.
Suihkonen
,
E. I.
Kauppinen
, and
M.
Sopanen
,
J. Vacuum Sci. Technol. A
35
,
060603
(
2017
).
8.
Y.
Lee
and
S. M.
George
,
ACS Nano
9
,
2061
(
2015
).
9.
S.
Park
,
W.
Lim
,
B.
Park
,
H.
Lee
,
J.
Bae
, and
G.
Yeom
,
Electrochem. Solid-State Lett.
11
,
H71
(
2008
).
10.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vacuum Sci. Technol. A
37
,
021004
(
2019
).
11.
J. W.
Park
,
D.
San Kim
,
W. O.
Lee
,
J. E.
Kim
, and
G. Y.
Yeom
,
Nanotechnology
30
,
085303
(
2018
).
12.
E.
Vogli
,
D.
Metzler
, and
G. S.
Oehrlein
,
Appl. Phys. Lett.
102
,
253105
(
2013
).
13.
N. R.
Johnson
,
H.
Sun
,
K.
Sharma
, and
S. M.
George
,
J. Vacuum Sci. Technol. A
34
,
050603
(
2016
).
14.
W.
Lu
,
Y.
Lee
,
J. C.
Gertsch
,
J. A.
Murdzek
,
A. S.
Cavanagh
,
L.
Kong
,
J. S. A.
del Alamo
, and
S. M.
George
,
Nano Lett.
19
,
5159
(
2019
).
15.
K. J.
Kanarik
 et al.,
J. Vacuum Sci. Technol. A
35
,
05C302
(
2017
).
16.
N. D.
Altieri
,
J. K.-C.
Chen
,
L.
Minardi
, and
J. P.
Chang
,
J. Vacuum Sci. Technol. A
35
,
05C203
(
2017
).
17.
X.
Gu
,
Y.
Kikuchi
,
T.
Nozawa
, and
S.
Samukawa
,
J. Phys. D Appl. Phys.
47
,
322002
(
2014
).
18.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
,
P491
(
2018
).
19.
X.
Lin
,
M.
Chen
,
A.
Janotti
, and
R.
Opila
,
J. Vacuum Sci. Technol. A
36
,
051401
(
2018
).
20.
N. R.
Johnson
and
S. M.
George
,
ACS Appl. Mater. Interfaces
9
,
34435
(
2017
).
21.
J. A.
Levinson
,
E. S.
Shaqfeh
,
M.
Balooch
, and
A. V.
Hamza
,
J. Vacuum Sci. Technol. A
15
,
1902
(
1997
).
22.
J. P.
Chang
,
J. C.
Arnold
,
G. C.
Zau
,
H.-S.
Shin
, and
H. H.
Sawin
,
J. Vacuum Sci. Technol. A
15
,
1853
(
1997
).
23.
J. P.
Chang
and
H. H.
Sawin
,
J. Vacuum Sci. Technol. A
15
,
610
(
1997
).
24.
X.
Sang
and
J. P.
Chang
,
J. Phys. D Appl. Phys.
53
,
183001
(
2020
).
25.
R. M.
Martin
and
J. P.
Chang
,
J. Vacuum Sci. Technol. A
27
,
224
(
2009
).
26.
J. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vacuum Sci. Technol. A
35
,
05C304
(
2017
).
27.
J. K.-C.
Chen
,
N. D.
Altieri
,
T.
Kim
,
E.
Chen
,
T.
Lill
,
M.
Shen
, and
J. P.
Chang
,
J. Vacuum Sci. Technol. A
35
,
05C305
(
2017
).
28.
N.
Matsunami
,
Y.
Yamamura
,
Y.
Itikawa
,
N.
Itoh
,
Y.
Kazumata
,
S.
Miyagawa
,
K.
Morita
,
R.
Shimizu
, and
H.
Tawara
,
At. Data Nucl. Data Tables
31
,
1
(
1984
).
29.
E. S.
Lambers
,
C.
Dykstal
,
J. M.
Seo
,
J. E.
Rowe
, and
P. H.
Holloway
,
Oxid. Met.
45
,
301
(
1996
).
30.
X.
Sang
and
J. P.
Chang
,
J. Vacuum Sci. Technol. A
(unpublished).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
32.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
34.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
35.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
36.
A. H.
Larsen
 et al.,
J. Phys. Condens. Matter
29
,
273002
(
2017
).
37.
H.
Edwards
and
A.
Knowles
,
J. Mol. Struct.
268
,
13
(
1992
).
38.
See supplementary material at https://doi.org/10.1116/6.0000225 for the computational details, the derivation of layer-by-layer removal model, optimized nickel formate structure, and details of the slab models.

Supplementary Material

You do not currently have access to this content.