In this work, the authors have investigated the dependence of the anisotropy level in an atomic layer etching (ALE) process of Al2O3 on form factor constraints when the ALE process involves etching in non-line-of-sight locations beneath a silicon nitride mask. In the experiments described here, thermal etching of Al2O3 without the use of any direction-inducing plasma components was explored utilizing the well characterized hydrogen fluoride/dimethyl-aluminum-chloride atomic layer etching process. The degree of anisotropy was quantified by measuring the ratio of lateral etch rate of this process in comparison to the vertical etch rate as a function of process step time inside 60 nm holes of aluminum oxide. Inside these holes, the authors determined that the horizontal etch rates slowed to an amount of 19% compared to the vertical rate when short process times were used. For process times operating in the saturation mode of the ALE process, horizontal etch rates per cycle could be sped up to 71% of the vertical rate but never reached parity with the latter. The authors propose a simple mechanism for explaining the anisotropy dependence on process step time and applied a reduced-order algorithm to model it. In this model, the authors introduced fitting parameters for surface modification depths and reaction times to match the experimentally found etch results. Conclusions could be drawn regarding topological hindrance or tortuosity for reactants to reach surfaces in shaded areas under the mask and for reaction by-products to escape from these locations and the impact on etch rate. In addition, the authors recognize that this mechanism could explain the unwanted depth dependence of the etch rate per cycle in high aspect ratio structures.
Skip Nav Destination
Causes of anisotropy in thermal atomic layer etching of nanostructures
Article navigation
July 2020
Research Article|
June 23 2020
Causes of anisotropy in thermal atomic layer etching of nanostructures
Special Collection:
Atomic Layer Etching (ALE)
Andreas Fischer;
Andreas Fischer
a)
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Aaron Routzahn;
Aaron Routzahn
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Sandy Wen;
Sandy Wen
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
Thorsten Lill
Thorsten Lill
Lam Research Corporation
, 4400 Cushing Parkway, Fremont, California 94538
Search for other works by this author on:
a)
Electronic mail: andreas.fischer@lamresearch.com
Note: This paper is part of the 2021 Special Topic Collection on Atomic Layer Etching (ALE).
J. Vac. Sci. Technol. A 38, 042601 (2020)
Article history
Received:
April 16 2020
Accepted:
May 22 2020
Citation
Andreas Fischer, Aaron Routzahn, Sandy Wen, Thorsten Lill; Causes of anisotropy in thermal atomic layer etching of nanostructures. J. Vac. Sci. Technol. A 1 July 2020; 38 (4): 042601. https://doi.org/10.1116/6.0000261
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00