Area-selective bottom-up synthesis routes of thin films are required to overcome the current limits in lithography, and such growth can be achieved with high quality and nanometer thickness control by area-selective atomic layer deposition (AS-ALD). However, the current range of materials demonstrated deposited by AS-ALD is limited, and no processes for molybdenum oxide have been available so far. In this work, the authors explore the properties of a new ALD precursor, MoCl4O, for deposition of molybdenum oxides by ALD. MoCl4O is administered at room temperature during deposition, making it readily available for use. When reacted with a combination of water and ozone, it leads to an AS-ALD process for deposition of MoOx—the first reported. The process is perfectly selective for growth on glass as compared to Si(100) substrates for deposition temperatures between 200 and 300 °C, with a growth rate of 0.72 Å/cycle at 300 °C. The process is attempted on a range of substrates proving good growth on soda-lime glass and LiF and no growth on Si(100), silica, Na2CO3, CaCO3, Li3PO3, or Li2SiO3. The findings of this study indicate an activated process by diffusion of sodium or lithium through the film during growth. The obtained films have further been characterized by x-ray photoelectron spectroscopy, scanning electron microscopy, x-ray diffraction, and atomic force microscopy, revealing films with an RSM roughness of 23 nm with the presence of crystalline MoO2 (C P/m) when deposited at 300 °C and crystalline Mo9O26 when deposited at 250 °C. The rough MoOx thin films may be applicable for electrocatalysis, gas sensors, or lithium-ion batteries. The findings of this study enable AS-ALD synthesis of molybdenum oxide with excellent selectivity not dependent on intermittent etching cycles during growth.

1.
B.
Wu
and
A.
Kumar
,
J. Vac. Sci. Technol. B
25
,
1743
(
2007
).
2.
R.
Chen
,
H.
Kim
,
P. C.
McIntyre
,
D. W.
Porter
, and
S. F.
Bent
,
Appl. Phys. Lett.
86
,
191910
(
2005
).
3.
R.
Clark
,
K.
Tapily
,
K.-H.
Yu
,
T.
Hakamata
,
S.
Consiglio
,
D.
O’Meara
,
C.
Wajda
,
J.
Smith
, and
G.
Leusink
,
APL Mater.
6
,
058203
(
2018
).
4.
L.
Casagrande
,
L.
Lietti
,
I.
Nova
,
P.
Forzatti
, and
A.
Baiker
,
Appl. Catal. B
22
,
63
(
1999
).
5.
J.
Sonnemans
and
P.
Mars
,
J. Catal.
31
,
209
(
1973
).
6.
H.
Chang
,
Q.
Wu
,
T.
Zhang
,
M.
Li
,
X.
Sun
,
J.
Li
,
L.
Duan
, and
J.
Hao
,
Environ. Sci. Technol.
49
,
12388
(
2015
).
7.
O. M.
Hussain
and
K. S.
Rao
,
Mater. Chem. Phys.
80
,
638
(
2003
).
8.
M. S.
Go
,
J.-M.
Song
,
C.
Kim
,
J.
Lee
,
J.
Kim
, and
M. J.
Lee
,
Electron. Mater. Lett.
11
,
252
(
2015
).
9.
C.
Zollfrank
,
K.
Gutbrod
,
P.
Wechsler
, and
J. P.
Guggenbichler
,
Mater. Sci. Eng. C
32
,
47
(
2012
).
10.
Y.
Liu
,
Y.
Lv
,
Z.
Tang
,
L.
He
, and
X.
Liu
,
Electrochim. Acta
189
,
184
(
2016
).
11.
U. K.
Sen
and
S.
Mitra
,
RSC Adv.
2
,
11123
(
2012
).
12.
Y.
Jin
,
H.
Wang
,
J.
Li
,
X.
Yue
,
Y.
Han
,
P. K.
Shen
, and
Y.
Cui
,
Adv. Mater.
28
,
3785
(
2016
).
13.
V.
Guidi
,
G.
Carlo Cardinali
,
L.
Dori
,
G.
Faglia
,
M.
Ferroni
,
G.
Martinelli
,
P.
Nelli
, and
G.
Sberveglieri
,
Sens. Actuators B Chem.
49
,
88
(
1998
).
14.
D.
Zhao
,
J.
Qin
,
L.
Zheng
, and
M.
Cao
,
Chem. Mater.
28
,
4180
(
2016
).
15.
S. K.
Deb
and
J. A.
Chopoorian
,
J. Appl. Phys.
37
,
4818
(
1966
).
16.
P. F.
Carcia
and
E. M.
McCarron
,
Thin Solid Films
155
,
53
(
1987
).
17.
C.
Julien
,
A.
Khelfa
,
O. M.
Hussain
, and
G. A.
Nazri
,
J. Cryst. Growth
156
,
235
(
1995
).
18.
R. M.
Guerrero
,
J. R. V.
Garcia
,
V.
Santes
, and
E.
Gomez
,
J. Alloys Compd.
434
,
701
(
2007
).
19.
M.
Diskus
,
O.
Nilsen
, and
H.
Fjellvag
,
J. Mater. Chem.
21
,
705
(
2011
).
20.
C. E.
Nanayakkara
,
A.
Vega
,
G.
Liu
,
C. L.
Dezelah
,
R. K.
Kanjolia
, and
Y. J.
Chabal
,
Chem. Mater.
28
,
8591
(
2016
).
21.
T. L.
Drake
and
P. C.
Stair
,
J. Vac. Sci. Technol. A
34
,
051403
(
2016
).
22.
T.
Jurca
,
A. W.
Peters
,
A. R.
Mouat
,
O. K.
Farha
,
J. T.
Hupp
,
T. L.
Lohr
,
M.
Delferro
, and
T. J.
Marks
,
Dalton Trans.
46
,
1172
(
2017
).
23.
A.
Bertuch
,
G.
Sundaram
,
M.
Saly
,
D.
Moser
, and
R.
Kanjolia
,
J. Vac. Sci. Technol. A
32
,
01A119
(
2014
).
24.
M. F. J.
Vos
,
B.
Macco
,
N. F. W.
Thissen
,
A. A.
Bol
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
34
,
01A103
(
2016
).
25.
K.
Bergum
,
A.
Magraso
,
H.
Fjellvag
, and
O.
Nilsen
,
J. Mater. Chem. A
2
,
18463
(
2014
).
26.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
27.
G. N.
Parsons
,
J. Vac. Sci. Technol. A
37
,
020911
(
2019
).
28.
J. A.
Singh
,
N. F. W.
Thissen
,
W.-H.
Kim
,
H.
Johnson
,
W. M. M.
Kessels
,
A. A.
Bol
,
S. F.
Bent
, and
A. J. M.
Mackus
,
Chem. Mater.
30
,
663
(
2018
).
29.
A.
Mameli
,
M. J. M.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
30.
E. K.
Seo
,
J. W.
Lee
,
H. M.
Sung-Suh
, and
M. M.
Sung
,
Chem. Mater.
16
,
1878
(
2004
).
31.
I.
Zyulkov
,
V.
Madhiwala
,
E.
Voronina
,
M.
Snelgrove
,
J.
Bogan
,
R.
O’Connor
,
S.
De Gendt
, and
S.
Armini
,
ACS Appl. Mater. Interfaces
12
,
4678
(
2020
).
32.
Z.
Zhang
,
T.
Dwyer
,
S. M.
Sirard
, and
J. G.
Ekerdt
,
J. Vac. Sci. Technol. A
37
,
020905
(
2019
).
33.
F. S.
Minaye Hashemi
,
C.
Prasittichai
, and
S. F.
Bent
,
ACS Nano
9
,
8710
(
2015
).
34.
J. N.
Kvalvik
,
K. B.
Kvamme
,
K.
Almaas
,
A.
Ruud
,
H. H.
Sønsteby
, and
O.
Nilsen
, “
LiF by atomic layer deposition - made easy
,”
J. Vac. Sci. Technol. A
(submitted).
35.
O.
Nilsen
,
H.
Fjellvåg
, and
A.
Kjekshus
,
Thin Solid Films
450
,
240
(
2004
).
36.
Ø. S.
Fjellvåg
,
Tynne filmer og nanobelter for batterier: Syntese og karakterisering av katodematerialer for litium- og natriumionbatterier
(
University of Oslo
, Oslo, Norway,
2014
).
37.
A.
Ruud
,
V.
Miikkulainen
,
K.
Mizohata
,
H.
Fjellvåg
, and
O.
Nilsen
,
J. Vac. Sci. Technol. A
35
,
01B133
(
2017
).
39.
O.
Bertrand
,
P.
Dufour
,
N.
Floquet
, and
L. C.
Dufoue
,
Phys. Status Solidi A
71
,
511
(
1982
).
40.
M.
Diskus
,
O.
Nilsen
,
H.
Fjellvåg
,
S.
Diplas
,
P.
Beato
,
C.
Harvey
,
E.
Lantman
, and
B.
Weckhuysen
,
J. Vac. Sci. Technol. A
30
,
01A107
(
2012
).
41.
Ø. S.
Fjellvåg
,
A.
Ruud
,
H. H.
Sønsteby
,
O.
Nilsen
, and
H.
Fjellvåg
,
Cryst. Growth Des.
20
, 3861–3866 (
2020
).
42.
H.
Gruber
and
E.
Krautz
,
Phys. Satus Solidi A
62
,
615
(
1980
).
43.
T.
Leisegang
,
A. A.
Levin
,
J.
Walter
, and
D. C.
Meyer
,
Cryst. Res. Technol.
40
,
95
(
2005
).
44.
J. G.
Choi
and
L. T.
Thompson
,
Appl. Surf. Sci.
93
,
143
(
1996
).
46.
Tungsten and molybdenum tetrachloride oxides
,” in
Inorganic Syntheses
(John Wiley & Sons, Inc., New York, 1980), pp.
195
199
.
47.
W.
Xie
and
G. N.
Parsons
,
J. Vac. Sci. Technol. A
38
,
022605
(
2020
).
48.
K.
Knapas
,
A.
Rahtu
, and
M.
Ritala
,
Chem. Vap. Depos.
15
,
269
(
2009
).
49.
J.
Aarik
,
A.
Aidla
,
K.
Kukli
, and
T.
Uustare
,
J. Cryst. Growth
144
,
116
(
1994
).
50.
See supplementary material at http://dx.doi.org/10.1116/6.0000219 for (1) measured film thicknesses before and after deposition of MoOx at 300 °C, (2) measured at.% from EDS used for selectivity calculations and (3) modelling of thickness vs number of cycles.

Supplementary Material

You do not currently have access to this content.