High-power impulse magnetron sputtering of a Ta target in precisely controlled Ar+O2+N2 gas mixtures was used to prepare amorphous N-rich tantalum oxynitride (Ta–O–N) films with a finely varied elemental composition. Postdeposition annealing of the films at 900°C for 5 min in vacuum led to their crystallization without any significant change in the elemental composition. The authors show that this approach allows preparation of a Ta–O–N film with a dominant Ta2N2O phase of the bixbyite structure. As far as the authors know, this phase has been neither experimentally nor theoretically reported yet. The film exhibits semiconducting properties characterized by two electrical (indirect or selection-rule forbidden) bandgaps of about 0.2 and 1.0 eV and one optical (direct and selection-rule allowed) bandgap of 2.0 eV (suitable for visible-light absorption up to 620 nm). This observation is in good agreement with the carried out ab initio calculations and the experimental data obtained by soft and hard X-ray photoelectron spectroscopy. Furthermore, the optical bandgap is appropriately positioned with respect to the redox potentials for water splitting, which makes this material an interesting candidate for this application.

1.
A.
Zaman
and
E.
Meletis
,
Coatings
7
,
209
(
2017
).
2.
C.
Koller
,
H.
Marihart
,
H.
Bolvardi
,
S.
Kolozsvári
, and
P.
Mayrhofer
,
Surf. Coat. Technol.
347
,
304
(
2018
).
3.
S.
Kim
and
B.
Cha
,
Thin Solid Films
475
,
202
(
2005
).
4.
M.
Alishahi
,
F.
Mahboubi
,
S. M.
Mousavi Khoie
,
M.
Aparicio
,
E.
Lopez-Elvira
,
J.
Méndez
, and
R.
Gago
,
RSC Adv.
6
,
89061
(
2016
).
5.
Y.
He
,
R.
Chen
,
W.
Fa
,
B.
Zhang
, and
D.
Wang
,
J. Chem. Phys.
151
,
130902
(
2019
).
6.
S.
Khan
,
M. J. M.
Zapata
,
M. B.
Pereira
,
R. V.
Gonçalves
,
L.
Strizik
,
J.
Dupont
,
M. J. L.
Santos
, and
S. R.
Teixeira
,
Phys. Chem. Chem. Phys.
17
,
23952
(
2015
).
7.
N.
Terao
,
Jpn. J. Appl. Phys.
10
,
248
(
1971
).
8.
C.-S.
Shin
,
Y.-W.
Kim
,
D.
Gall
,
J.
Greene
, and
I.
Petrov
,
Thin Solid Films
402
,
172
(
2002
).
9.
C.
Stampfl
and
A. J.
Freeman
,
Phys. Rev. B
71
,
024111
(
2005
).
10.
A. Y.
Ganin
,
L.
Kienle
, and
G. V.
Vajenine
,
Eur. J. Inorg. Chem.
2004
,
3233
(
2004
).
11.
K.
Salamon
,
M.
Očko
,
N.
Radić
,
I.
Bogdanović Radović
,
V.
Despoja
, and
S.
Bernstorff
,
J. Alloys Compd.
682
,
98
(
2016
).
12.
H.
Le Dréo
,
O.
Banakh
,
H.
Keppner
,
P.-A.
Steinmann
,
D.
Briand
, and
N.
de Rooij
,
Thin Solid Films
515
,
952
(
2006
).
13.
D.
Cristea
,
A.
Crisan
,
D.
Munteanu
,
M.
Apreutesei
,
M.
Costa
, and
L.
Cunha
,
Surf. Coat. Technol.
258
,
587
(
2014
).
14.
C.
Chung
,
T.
Chen
, and
N.
Chang
,
Thin Solid Films
519
,
5099
(
2011
).
15.
M.-C.
Chen
et al.,
Thin Solid Films
528
,
224
(
2013
).
16.
D.
Cristea
et al.,
Appl. Surf. Sci.
354
,
298
(
2015
).
17.
F.
Zoubian
,
E.
Tomasella
,
A.
Bousquet
,
T.
Sauvage
, and
C.
Eypert
,
Adv. Mater. Res.
324
,
73
(
2011
).
18.
A.
Bousquet
,
F.
Zoubian
,
J.
Cellier
,
C.
Taviot-Gueho
,
T.
Sauvage
, and
E.
Tomasella
,
J. Phys. D: Appl. Phys.
47
,
475201
(
2014
).
19.
K.
Salamon
,
M.
Mičetić
,
J.
Sancho-Parramon
,
I.
Bogdanović Radović
,
Z.
Siketić
,
I.
Šarić
,
M.
Petravić
, and
S.
Bernstorff
,
J. Phys. D: Appl. Phys.
52
,
305304
(
2019
).
20.
D.
Cristea
,
L.
Cunha
,
C.
Gabor
,
I.
Ghiuta
,
C.
Croitoru
,
A.
Marin
,
L.
Velicu
,
A.
Besleaga
, and
B.
Vasile
,
Nanomaterials
9
,
476
(
2019
).
21.
P.
Zhang
,
J.
Zhang
, and
J.
Gong
,
Chem. Soc. Rev.
43
,
4395
(
2014
).
22.
T.
Takata
,
C.
Pan
, and
K.
Domen
,
ChemElectroChem
3
,
31
(
2016
).
23.
Z.
Wang
,
C.
Li
, and
K.
Domen
,
Chem. Soc. Rev.
48
,
2109
(
2019
).
24.
G.
Brauer
and
J. R.
Weidlein
,
Angew. Chem. Int. Ed. Engl.
4
,
875
(
1965
).
25.
H.
Schilling
,
A.
Stork
,
E.
Irran
,
H.
Wolff
,
T.
Bredow
,
R.
Dronskowski
, and
M.
Lerch
,
Angew. Chem. Int. Ed.
46
,
2931
(
2007
).
26.
T.
Lüdtke
,
A.
Schmidt
,
C.
Göbel
,
A.
Fischer
,
N.
Becker
,
C.
Reimann
,
T.
Bredow
,
R.
Dronskowski
, and
M.
Lerch
,
Inorg. Chem.
53
,
11691
(
2014
).
27.
Y. A.
Buslaev
,
M. A.
Glushova
,
M. M.
Ershova
, and
E. M.
Shustorovich
,
Neorg. Mater.
2
,
2120
(
1966
).
28.
M.-W.
Lumey
and
R.
Dronskowski
,
Z. Anorg. Allg. Chem.
629
,
2173
(
2003
).
29.
C.-L.
Chang
and
Y.-W.
Chen
,
Surf. Coat. Technol.
205
,
S1
(
2010
).
30.
D.
Lundin
and
K.
Sarakinos
,
J. Mater. Res.
27
,
780
(
2012
).
31.
J.
Rezek
,
J.
Vlček
,
J.
Houška
, and
R.
Čerstvý
,
Thin Solid Films
566
,
70
(
2014
).
32.
A.
Belosludtsev
,
J.
Houška
,
J.
Vlček
,
S.
Haviar
,
R.
Čerstvý
,
J.
Rezek
, and
M.
Kettner
,
Ceram. Int.
43
,
5661
(
2017
).
33.
J.
Čapek
,
Š.
Batková
,
S.
Haviar
,
J.
Houška
,
R.
Čerstvý
, and
P.
Zeman
,
Ceram. Int.
45
,
9454
(
2019
).
34.
P.
Giannozzi
et al.,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
35.
P.
Giannozzi
et al.,
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
36.
H.
Ebert
,
D.
Ködderitzsch
, and
J.
Minár
,
Rep. Prog. Phys.
74
,
096501
(
2011
).
37.
J.
Braun
,
J.
Minár
, and
H.
Ebert
,
Phys. Rep.
740
,
1
(
2018
).
38.
K.
Laasonen
,
R.
Car
,
C.
Lee
, and
D.
Vanderbilt
,
Phys. Rev. B
43
,
6796
(
1991
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
40.
L.
Pauling
and
M. D.
Shappell
,
Z. Kristallogr. Cryst. Mater.
75
,
128
(
1930
).
41.
W.-J.
Chun
,
A.
Ishikawa
,
H.
Fujisawa
,
T.
Takata
,
J. N.
Kondo
,
M.
Hara
,
M.
Kawai
,
Y.
Matsumoto
, and
K.
Domen
,
J. Phys. Chem. B
107
,
1798
(
2003
).
42.
S. M.
Sze
, Physics of Semiconductor Devices (Wiley, New York, 1981).
43.
Y.
Matsumoto
,
J. Solid State Chem.
126
,
227
(
1996
).
44.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
,
253
(
2009
).
45.
N.
Fajrina
and
M.
Tahir
,
Int. J. Hydrogen Energy
44
,
540
(
2019
).
46.
S.
Chen
and
L.-W.
Wang
,
Chem. Mater.
24
,
3659
(
2012
).
47.
S. S.
Li
,
Semiconductor Physical Electronics
(
Springer
,
New York
,
2007
), p.
140
.
You do not currently have access to this content.