Experimentally measured resistivity of Co(0001) and Ru(0001) single crystal thin films, grown on c-plane sapphire substrates, as a function of thickness is modeled using the semiclassical model of Fuchs–Sondheimer. The model fits show that the resistivity of Ru would cross below that for Co at a thickness of approximately 20 nm. For Ru films with thicknesses above 20 nm, transmission electron microscopy evidences threading and misfit dislocations, stacking faults, and deformation twins. Exposure of Co films to ambient air and the deposition of oxide layers of SiO2, MgO, Al2O3, and Cr2O3 on Ru degrade the surface specularity of the metallic layer. However, for the Ru films, annealing in a reducing ambient restores the surface specularity. Epitaxial electrochemical deposition of Co on epitaxially deposited Ru layers is used as an example to demonstrate the feasibility of generating epitaxial interconnects for back-end-of-line structures. An electron transport model based on a tight-binding approach is described, with Ru interconnects used as an example. The model allows conductivity to be computed for structures comprising large ensembles of atoms (105–106), scales linearly with system size, and can also incorporate defects.

1.
D. H.
Albonesi
,
A.
Kodi
, and
V.
Stojanovic
,
Final Report of the NSF Sponsored Workshop on Emerging Technologies for Interconnects
, edited by
D. H.
Albonesi
,
A.
Kodi
, and
V.
Stojanovic
(
National Science Foundation
,
2013
), see: https://pdfs.semanticscholar.org/cf70/02b4b4147afaf5b5486d884c2a683ae9a361.pdf.
2.
B. Q.
Wu
and
A.
Kumar
,
Appl. Phys. Rev.
1
,
011104
(
2014
).
3.
K.
Barmak
,
X.
Liu
,
A.
Darbal
,
N. T.
Nuhfer
,
D.
Choi
,
T.
Sun
,
A. P.
Warren
,
K. R.
Coffey
, and
M. F.
Toney
,
J. Appl. Phys.
120
,
065106
(
2016
).
4.
J. S.
Chawla
,
F.
Gstrein
,
K. P.
O'Brien
,
J. S.
Clarke
, and
D.
Gall
,
Phys. Rev. B
84
,
235423
(
2011
).
5.
T.
Sun
,
B.
Yao
,
A. P.
Warren
,
K.
Barmak
,
M. F.
Toney
,
R. E.
Peale
, and
K. R.
Coffey
,
Phys. Rev. B
81
,
155454
(
2010
).
6.
D.
Josell
,
S. H.
Brongersma
, and
Z.
Tőkei
,
Annu. Rev. Mater. Res.
39
,
231
(
2009
).
7.
J. J.
Plombon
,
E.
Andideh
,
V. M.
Dubin
, and
J.
Maiz
,
Appl. Phys. Lett.
89
,
113124
(
2006
).
8.
K.
Fuchs
,
Math. Proc. Camb. Philos. Soc.
34
,
100
(
1938
).
9.
10.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
11.
D.
Gall
,
J. Appl. Phys.
119
,
085101
(
2016
).
12.
S.
Dutta
,
K.
Sankaran
,
K.
Moors
,
G.
Pourtois
,
S. V.
Elshocht
,
J.
Bömmels
,
W.
Vandervorst
,
Z.
Tőkei
, and
C.
Adelmann
,
J. Appl. Phys.
122
,
025107
(
2017
).
13.
K.
Barmak
,
T.
Sun
, and
R.
Coffey
,
AIP Conf. Proc.
1300
,
12
(
2010
), .
14.
D.
Choi
,
X.
Liu
,
P. K.
Schelling
,
K. R.
Coffey
, and
K.
Barmak
,
J. Appl. Phys.
115
,
104308
(
2014
).
15.
R. C.
Munoz
and
C.
Arenas
,
Appl. Phys. Rev.
4
,
011102
(
2017
).
16.
T. J.
Zhou
and
D.
Gall
,
Phys. Rev. B
97
,
165406
(
2018
).
17.
D.
Choi
,
C.-S.
Kim
,
S.
Chung
,
A. P.
Warren
,
N. T.
Nuhfer
,
M. F.
Toney
,
K. R.
Coffey
, and
K.
Barmak
,
Phys. Rev. B
86
,
045432
(
2012
).
18.
D.
Choi
,
M.
Moneck
,
X.
Liu
,
S. J.
Oh
,
C. R.
Kagan
,
K. R.
Coffey
, and
K.
Barmak
,
Sci. Rep.
3
,
2591
(
2013
).
19.
P. Y.
Zheng
and
D.
Gall
,
J. Appl. Phys.
122
,
135301
(
2017
).
20.
M.
Ohring
,
Reliability and Failure of Electronic Materials and Devices
(
Elsevier
,
New York
,
1998
), pp.
303
357
.
21.
C.
Volkert
,
Electromigration in Encyclopedia of Materials: Science and Technology
(
Elsevier
,
New York
,
2001
), pp.
2548
2557
.
22.
C.-K.
Hu
,
R.
Rosenberg
, and
K. Y.
Lee
,
Appl. Phys. Lett.
74
,
245
(
1999
).
23.
J.
Schmitz
,
Surf. Coat. Technol.
343
,
83
(
2018
).
24.
R.
Rosenberg
,
D. C.
Edelstein
,
C.-K.
Hu
, and
K. P.
Rodbell
,
Annu. Rev. Mater. Sci.
30
,
229
(
2000
).
25.
M. J.
Mehl
and
D. A.
Papaconstantopoulos
,
Phys. Rev. B
54
,
4519
(
1996
).
26.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
27.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
28.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mat. Sci.
6
,
15
(
1996
).
29.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
30.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
31.
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
32.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
33.
A.
Weiße
,
G.
Wellein
,
A.
Alvermann
, and
H.
Fehske
,
Rev. Mod. Phys.
78
,
275
(
2006
).
34.
S.
Erdin
,
Y.
Lin
, and
J. W.
Halley
,
Phys. Rev. B
72
,
035405
(
2005
).
35.
J. R.
Chelikowsky
,
C. T.
Chan
, and
S. G.
Louie
,
Phys. Rev. B
34
,
6656
(
1994
).
36.
D.
Gall
,
J. Appl. Phys.
127
,
050901
(
2020
).
37.
E.
Milosevic
,
S.
Kerdsongpanya
,
M. E.
McGahay
,
A.
Zangiabadi
,
K.
Barmak
, and
D.
Gall
,
J. Appl. Phys.
125
,
245105
(
2019
).
38.
E.
Milosevic
,
S.
Kerdsongpanya
,
A.
Zangiabadi
,
K.
Barmak
,
K. R.
Coffey
, and
D.
Gall
,
J. Appl. Phys.
124
,
165105
(
2018
).
39.
J. M.
Purswani
and
D.
Gall
,
Thin Solid Films
516
,
465
(
2007
).
40.
P.
Zheng
,
B. D.
Ozsdolay
, and
D.
Gall
,
J. Vac. Sci. Technol. A
33
,
061505
(
2015
).
41.
J. S.
Chawla
and
D.
Gall
,
J. Appl. Phys.
111
,
043708
(
2012
).
42.
J. S.
Chawla
,
X. Y.
Zhang
, and
D.
Gall
,
J. Appl. Phys.
113
,
063704
(
2013
).
43.
E.
Milosevic
,
S.
Kerdsongpanya
, and
D.
Gall
, in IEEE Nanotechnology Symposium (ANTS), Albany, NY, 14–15 November 2018 (IEEE, New York, 2018), p. 1.
44.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
, 4th ed. (
Butterworth Heinemann
,
Washington
,
DC
,
2001
), pp.
103
106
.
45.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Crystal Growth
27
,
118
(
1974
).
46.
J. A.
Floro
,
D. M.
Follstaedt
,
P.
Provencio
,
S. J.
Hearne
, and
S. R.
Lee
,
J. Appl. Phys.
96
,
7087
(
2004
).
47.
B. A.
Bilby
and
A. G.
Crocker
,
Proc. R. Soc. A
288
,
240
(
1965
).
48.
M. H.
Yoo
,
Metall. Trans. A
12
,
409
(
1981
).
49.
J. W.
Christian
and
S.
Mahajan
,
Prog. Mater. Sci.
39
,
1
(
1995
).
50.
K.
Dovidenko
,
S.
Oktyabrsky
, and
J.
Narayan
,
J. Appl. Phys.
82
,
4296
(
1997
).
51.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy
(
Cambridge University
,
Cambridge
,
2009
), pp.
463
481
.
52.
R. W.
Powell
,
R. P.
Tye
, and
J. M.
Woodman
,
Platinum Met. Rev.
6
,
138
(
1962
).
53.
R.
Powell
,
R. P.
Tye
, and
J. M.
Woodman
,
J. Less Common Met.
12
,
1
(
1967
).
54.
S. S.
Ezzat
,
P. D.
Mani
,
A.
Khaniya
,
W.
Kaden
,
D.
Gall
,
K.
Barmak
, and
K. R.
Coffey
,
J. Vac. Sci. Technol. A
37
,
031516
(
2019
).
55.
R.
Gusley
,
K.
Sentosun
,
S.
Ezzat
,
K. R.
Coffey
,
A. C.
West
, and
K.
Barmak
,
J. Electrochem. Soc.
166
,
D875
(
2019
).
56.
S.
Yamada
,
Y.
Nishibe
,
M.
Saizaki
,
H.
Kitajima
,
S.
Ohtsubo
,
A.
Morimoto
,
T.
Shimizu
,
K.
Ishida
, and
Y.
Masaki
,
Jpn. J. Appl. Phys.
41
,
L206
(
2002
).
57.
X.
Gao
 et al.,
Electrochem. Solid State Lett.
14
,
H268
(
2011
).
You do not currently have access to this content.