The authors describe the enhancement of the area-selective chemical vapor deposition of cobalt films on one oxide surface over another from the precursor Co2(CO)8 by addition of the nucleation inhibitor ammonia (NH3). In the absence of an NH3 coflow, the Co2(CO)8 precursor exhibits a weak intrinsic selectivity: at 70 °C, Co nucleates quickly on Al2O3 but more slowly on SiO2. The addition of an NH3 coflow, however, greatly amplifies the selectivity between different oxide surfaces. Thus, NH3 significantly inhibits nucleation on acidic oxides such as SiO2 and WO3 but has little effect on more basic oxides such as Al2O3, HfO2, and MgO. Comparison of growth on fully hydroxylated and dehydroxylated SiO2 suggests that hydroxyl groups are the nucleation sites that are affected by the addition of NH3. The mechanism of nucleation appears to be disproportionation of Co2(CO)8 to Co2+ (the intermediate that leads to nucleation) and Co(CO)4: this disproportionation occurs readily on basic oxides but not on acidic oxides. The addition of NH3 has little effect on Co nucleation on basic oxides, probably because ammonia binds poorly to such surfaces, but NH3 greatly retards nucleation on acidic oxides such as SiO2; the authors propose that the latter result is either a site blocking effect or the result of conversion of Co2+ to inactive Co(NH3)x2+ species. Nucleation of cobalt is facile on gold (a very unreactive metal) even in the presence of NH3. The authors have found, however, that the deposition of Co on tungsten can be inhibited by exposing the surface briefly to ozone; no deposition occurs on the resulting thin tungsten oxide overlayer from Co2(CO)8 in the presence of NH3. In other words, this thin oxide overlayer affords the same selective inhibition behavior as seen on bulk WO3. In this way, both metal-on-metal and metal-on-oxide selectivity can be achieved. Cobalt films grown in the absence and presence of ammonia have resistivities of 11–20 and 15–25 μΩ cm, respectively.

1.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
2.
J. F.
Zheng
 et al., “
Selective Co growth on Cu for void-free via fill
,” in
2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)
, Grenoble, France, 18–21 May 2015 (IEEE, New Jersey, 2015).
3.
A.
Mameli
,
M. J. M.
Merkx
,
B.
Karasulu
,
F.
Roozeboom
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
ACS Nano
11
,
9303
(
2017
).
4.
W. L.
Gladfelter
,
Chem. Mater.
5
,
1372
(
1993
).
5.
S. K.
Song
,
H.
Saare
, and
G. N.
Parsons
,
Chem. Mater.
31
,
4793
(
2019
).
6.
Z. W.
Li
,
R. G.
Gordon
,
D. B.
Farmer
,
Y. B.
Lin
, and
J.
Vlassak
,
Electrochem. Solid State
8
,
G182
(
2005
).
7.
H.
Li
and
B. P.
Tonner
,
Surf. Sci.
237
,
141
(
1990
).
8.
C. C.
Yang
,
F. R.
McFeely
,
P. C.
Wang
,
K.
Chanda
, and
D. C.
Edelstein
,
Electrochem. Solid State
13
,
D33
(
2010
).
9.
M.
Tagami
,
N.
Furutake
,
N.
Inoue
,
E.
Nakazawa
,
K.
Arita
, and
Y.
Hayashi
,
Proceedings of the 2009 IEEE International Interconnect Technology Conference
, Baltimore, MD, 7–9 December 2009 (IEEE, New Jersey,
2009
), pp. 11–13.
10.
J. R.
Lloyd
,
M. W.
Lane
,
E. G.
Liniger
,
C. K.
Hu
,
T. M.
Shaw
, and
R.
Rosenberg
,
IEEE Trans. Device Mater. Reliab.
5
,
113
(
2005
).
11.
L. B.
Henderson
and
J. G.
Ekerdt
,
J. Electrochem. Soc.
157
,
D29
(
2010
).
12.
M. H.
van der Veen
 et al.,
2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference
, Grenoble, France, 18–21 May 2015 (IEEE, New Jersey,
2015
), pp. 25–27
.
13.
J.
Kelly
 et al., “
Experimental study of nanoscale Co damascene BEOL interconnect structures
,” in
2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC)
, San Jose, CA, 23–26 May 2016 (IEEE, New Jersey,
2016
).
14.
Y.
Shacham-Diamand
and
Y.
Sverdlov
,
Microelectron. Eng.
50
,
525
(
2000
).
15.
J.
Gambino
 et al.,
Microelectron. Eng.
83
,
2059
(
2006
).
16.
M. M.
Kerrigan
,
J. P.
Klesko
, and
C. H.
Winter
,
Chem. Mater.
29
,
7458
(
2017
).
17.
C. C.
Yang
,
P.
Flaitz
,
P. C.
Wang
,
F.
Chen
, and
D.
Edelstein
,
IEEE Electron. Dev. Lett.
31
,
728
(
2010
).
18.
S. W.
Ryu
,
S.
Kim
,
J.
Yoon
,
J. T.
Tanskanen
,
H.
Kim
, and
H. B. R.
Lee
,
Curr. Appl. Phys.
16
,
88
(
2016
).
19.
E.
Mohimi
,
Z. V.
Zhang
,
S. M.
Liu
,
J. L.
Mallek
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
36
,
041507
(
2018
).
20.
S.
Jayaraman
,
Y.
Yang
,
D. Y.
Kim
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
23
,
1619
(
2005
).
21.
S.
Jayaraman
,
E. J.
Klein
,
Y.
Yang
,
D. Y.
Kim
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
23
,
631
(
2005
).
22.
H.
Baumgartner
,
V.
Fuenzalida
, and
I.
Eisele
,
Appl. Phys. A Mater. Sci. Process.
43
,
223
(
1987
).
23.
J. R.
Vig
,
J. Vac. Sci. Technol., A
3
,
1027
(
1985
).
24.
T. K.
Talukdar
,
S.
Liu
,
Z.
Zhang
,
F.
Harwath
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
36
,
051504
(
2018
).
25.
C.
Nilsson
and
J.
Habainy
, “
Oxidation of pure tungsten in the temperature interval 400° to 900 °C
,” Master thesis (
Lund University
,
2013
).
26.
E. A.
Wovchko
,
J. C.
Camp
,
J. A.
Glass
, and
J. T.
Yates
,
Langmuir
11
,
2592
(
1995
).
27.
L. T.
Zhuravlev
,
Colloids Surf. A
173
,
1
(
2000
).
28.
E.
Borello
,
G.
Dellagat
,
B.
Fubini
,
C.
Morterra
, and
G.
Venturel
,
J. Catal.
35
,
1
(
1974
).
29.
S.
Shioji
,
M.
Kawaguchi
,
Y.
Hayashi
,
K.
Tokami
, and
H.
Yamamoto
,
Adv. Powder Technol.
12
,
331
(
2001
).
30.
A.
Kanta
,
R.
Sedev
, and
J.
Ralston
,
Langmuir
21
,
2400
(
2005
).
31.
S.
Babar
,
E.
Mohimi
,
B.
Trinh
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
4
,
N60
(
2015
).
32.
S.
Babar
,
N.
Kumar
,
P.
Zhang
, and
J. R.
Abelson
,
Chem. Mater.
25
,
662
(
2013
).
33.
M. E.
Gross
,
K. S.
Kranz
,
D.
Brasen
, and
H.
Luftman
,
J. Vac. Sci. Technol. B
6
,
1548
(
1988
).
34.
J.
Lee
 et al.,
J. Electrochem. Soc.
153
,
G539
(
2006
).
35.
S.
Babar
, “
Role of growth inhibitors in nucleation and growth of thin film deposited by chemical vapor deposition in high aspect ratio structures
,” Doctorate dissertation (
University of Illinois at Urbana-Champaign
,
2013
).
36.
M.
Bettge
,
Y.
Li
,
B.
Sankaran
,
N. D.
Rago
,
T.
Spila
,
R. T.
Haasch
,
I.
Petrov
, and
D. P.
Abraham
,
J. Power Sources
233
,
346
(
2013
).
37.
M.
Kosmulski
,
Adv. Colloid Interface Sci.
238
,
1
(
2016
).
38.
K. M.
Rao
,
G.
Spoto
,
E.
Guglielminotti
, and
A.
Zecchina
,
J. Chem. Soc. Faraday Trans.
1
,
2195
(
1988
).
39.
A.
Comas-Vives
,
Phys. Chem. Chem. Phys.
18
,
7475
(
2016
).
40.
E.
Mohimi
,
Z. V.
Zhang
,
J. L.
Mallek
,
S.
Liu
,
B. B.
Trinh
,
P. P.
Shetty
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Vac. Sci. Technol. A
37
,
031509
(
2019
).
41.
A.
Vesel
,
A.
Drenik
,
R.
Zaplotnik
,
M.
Mozetic
, and
M.
Balat-Pichelin
,
Surf. Interface Anal.
42
,
1168
(
2010
).
42.
H. G.
Ang
,
G. K.
Chuah
,
S.
Jaenicke
, and
W. L.
Loh
,
J. Chem. Soc. Dalton
7
,
1243
(
1997
).
43.
H. G.
Ang
,
K. S.
Chan
,
G. K.
Chuah
,
S.
Jaenicke
, and
S. K.
Neo
,
J. Chem. Soc. Dalton
23
,
3753
(
1995
).
44.
A.
Brenner
,
D. A.
Hucul
, and
S. J.
Hardwick
,
Inorg. Chem.
18
,
1478
(
1979
).
45.
J. W.
Klaus
and
S. M.
George
,
J. Electrochem. Soc.
147
,
2658
(
2000
).
46.
H. H.
Lamb
,
B. C.
Gates
, and
H.
Knozinger
,
Angew. Chem. Int. Ed.
27
,
1127
(
1988
).
47.
K. M.
Rao
,
G.
Spoto
, and
A.
Zecchina
,
J. Catal.
113
,
466
(
1988
).
48.
M.
Kurhinen
and
T. A.
Pakkanen
,
Langmuir
14
,
6907
(
1998
).
49.
S.
Suvanto
,
T. A.
Pakkanen
, and
L.
Backman
,
Appl. Catal. A
177
,
25
(
1999
).
50.
S.
Suvanto
,
P.
Hirva
, and
T. A.
Pakkanen
,
Surf. Sci.
465
,
277
(
2000
).
51.
K.
Muthukumar
,
H. O.
Jeschke
,
R.
Valenti
,
E.
Begun
,
J.
Schwenk
,
F.
Porrati
, and
M.
Huth
,
Beilstein J. Nanotechnol.
3
,
546
(
2012
).
52.
K.
Muthukumar
,
R.
Valenti
, and
H. O.
Jeschke
,
J. Chem. Phys.
140
,
184706
(
2014
).
53.
R. L.
Schneider
,
R. F.
Howe
, and
K. L.
Watters
,
Inorg. Chem.
23
,
4593
(
1984
).
54.
N.
Homs
,
A.
Choplin
,
P.
Ramirez de la Piscina
,
L.
Huang
,
E.
Garbowski
,
R.
Sanchez-Delgado
,
A.
Theolier
, and
J. M.
Basset
,
Inorg. Chem.
27
,
4030
(
1988
).
55.
W.
Hieber
and
J.
Sedlmeier
,
Chem. Ber.
87
,
25
(
1954
).
56.
A.
Zecchina
,
G.
Spoto
,
E.
Garrone
, and
A.
Bossi
,
J. Phys. Chem.
88
,
2587
(
1984
).
57.
F.
Arena
,
R. D.
Chio
, and
G.
Trunfio
,
Appl. Catal. A
503
,
227
(
2015
).
58.
See supplementary material at https://doi.org/10.1116/1.5144501 for effect of ozone treatment on nucleation and contact angle; XRD patterns; film roughnesses; AFM images of patterned substrate before and after deposition; and ellipsometry studies for various conditions.

Supplementary Material

You do not currently have access to this content.