In recent years, the use of silver-based materials for selective and highly active ethanol reactivity in single atom catalysis and the ethanol oxidation reaction in direct fuel cells highlights the importance of silver (Ag) in an ethanol economy. Understanding the interaction of ethanol with Ag(111) and the natural defects found on extended Ag(111) is critical to the overall understanding of more complex catalytic processes including ethanol activation over Ag-based catalysts. The research herein aims to characterize the interaction of ethanol molecules on undercoordinated defect sites of Ag(111) to mimic active sites found on Ag nanoparticle catalysts. The interaction between ethanol and Ag(111) was studied using temperature programed desorption (TPD), x-ray photoelectron spectroscopy, and density functional theory (DFT). Molecular ethanol adsorption and desorption from Ag(111) and the distinction between undercoordinated Ag(111) adsorption sites were determined using TPD in correlation with DFT. Complete analysis of TPD data for ethanol adsorbed to terrace sites was used to calculate a kinetic prefactor (3.4 × 1015) and desorption energy (0.54 eV). A better understanding of defect-dependent behavior for ethanol on silver can lead to a greater insight into high surface area nanoparticle catalysts used in industries, catalytic converters, and photo-, electro-, and heterogeneous catalysis. The results suggest that ethanol preferentially adsorbs to undercoordinated sites on Ag(111), resulting in higher binding energies for these molecules (Redhead first order approximation for desorption energies is terrace, 0.54 eV; step edge, 0.57 eV; and kink sites, 0.61 eV). Furthermore, alteration of the silver surface can lead to a redistribution of these sites.

1.
S.
Linic
and
M. A.
Barteau
,
J. Am. Chem. Soc.
124
,
310
(
2002
).
2.
D.
Stacchiola
,
G.
Wu
,
M.
Kaltchev
, and
W.
Tysoe
,
Surf. Sci.
486
,
9
(
2001
).
3.
S.
Linic
and
M. A.
Barteau
,
J. Am. Chem. Soc.
125
,
4034
(
2003
).
5.
D.
Torres
,
N.
Lopez
,
F.
Illas
, and
R. M.
Lambert
,
J. Am. Chem. Soc.
127
,
10774
(
2005
).
6.
M.
Karatok
,
E. I.
Vovk
,
A. V.
Koc
, and
E.
Ozensoy
,
J. Phys. Chem. C
121
,
22985
(
2017
).
7.
I. E.
Wachs
and
R. J.
Madix
,
Appl. Surf. Sci.
1
,
303
(
1978
).
8.
T. E.
Felter
,
W. H.
Weinberg
,
G. Y.
Lastushkina
,
P. A.
Zhdan
,
G. K.
Boreskov
, and
J.
Hrbek
,
Appl. Surf. Sci.
16
,
351
(
1983
).
9.
H.
Aljama
,
J. S.
Yoo
,
J. K.
Nørskov
,
F.
Abild-Pedersen
, and
F.
Studt
,
ChemCatChem
8
,
3621
(
2016
).
10.
H.-Y.
Su
,
M.-M.
Yang
,
X.-H.
Bao
, and
W.-X.
Li
,
J. Phys. Chem. C
112
,
17303
(
2008
).
11.
P.
Aich
,
H.
Wei
,
B.
Basan
,
A. J.
Kropf
,
N. M.
Schweitzer
,
C. L.
Marshall
,
J. T.
Miller
, and
R.
Meyer
,
J. Phys. Chem. C
119
,
18140
(
2015
).
12.
D. A.
Patel
,
P. L.
Kress
,
L. A.
Cramer
,
A. M.
Larson
, and
E. C. H.
Sykes
,
J. Chem. Phys.
151
,
164705
(
2019
).
13.
H.
Li
,
W.
Chai
, and
G.
Henkelman
,
J. Mater. Chem. A
7
,
23868
(
2019
).
14.
G.
Halasi
,
A.
Kecskeméti
, and
F.
Solymosi
,
Catal. Lett.
135
,
16
(
2010
).
15.
Z.
Li
,
A. A.
Haidry
,
Y. S.
Liu
,
L. C.
Sun
,
L. J.
Xie
,
Q.
Fatima
, and
Z. J.
Yao
,
J. Mater. Sci. Mater. Electron.
29
,
19219
(
2018
).
16.
M. A.
Nadeem
and
H.
Idriss
,
Chem. Commun.
54
,
5197
(
2018
).
17.
A.
Watanabe
,
Y.
Kotake
,
Y.
Kamata
,
A.
Chikamatsu
,
K.
Ueno
,
H.
Misawa
, and
T.
Hasegawa
,
J. Phys. Chem. Lett.
5
,
25
(
2014
).
18.
Z.
Yang
,
J.
Li
,
X.
Yang
,
X.
Xie
, and
Y.
Wu
,
J. Mol. Catal. A Chem.
241
,
15
(
2005
).
19.
H.
Zhang
,
Y.
Shang
,
J.
Zhao
, and
J.
Wang
,
ACS Appl. Mater. Interfaces
9
,
16635
(
2017
).
20.
W.
Zhao
,
Z.
Zhang
,
J.
Zhang
,
H.
Wu
,
L.
Xi
, and
C.
Ruan
,
Mater. Lett.
171
,
182
(
2016
).
21.
L.
Li
,
M.
Chen
,
G.
Huang
,
N.
Yang
,
L.
Zhang
,
H.
Wang
,
Y.
Liu
,
W.
Wang
, and
J.
Gao
,
J. Power Sources
263
,
13
(
2014
).
22.
O.
Obodeh
and
M. O.
Osuide
,
Am. J. Sci. Ind. Res.
1
,
203
(
2010
).
23.
J.
Liu
,
H.
Zhou
,
Q.
Wang
,
F.
Zeng
, and
Y.
Kuang
,
J. Mater. Sci.
47
,
2188
(
2012
).
24.
M.
Pan
,
D. W.
Flaherty
, and
C. B.
Mullins
,
J. Phys. Chem. Lett.
2
,
1363
(
2011
).
25.
X.
Liu
,
B.
Xu
,
J.
Haubrich
,
R. J.
Madix
, and
C. M.
Friend
,
J. Am. Chem. Soc.
131
,
5757
(
2009
).
26.
J.
Gong
and
C.
Mullins
,
J. Am. Chem. Soc.
130
,
16458
(
2008
).
27.
D. T.
Boyle
 et al.,
J. Phys. Chem. C
121
,
7794
(
2017
).
28.
R. A.
Hoyt
,
M. M.
Montemore
,
E. C. H.
Sykes
, and
E.
Kaxiras
,
J. Phys. Chem. C
122
,
21952
(
2018
).
29.
K.
Sun
,
M.
Zhang
, and
L.
Wang
,
Chem. Phys. Lett.
585
,
89
(
2013
).
30.
G.
Wu
,
D.
Stacchiola
,
M.
Kaltchev
, and
W.
Tysoe
,
Surf. Sci.
463
,
81
(
2000
).
31.
Z. Y.
Wang
,
C. F.
Ng
,
P. K.
Lim
,
H. W.
Leung
,
J. G.
Wu
, and
H. F.
Chen
,
J. Phys. Condens. Matter
6
,
7207
(
1994
).
32.
P.
Tereshchuk
and
J. L. F.
Da Silva
,
J. Phys. Chem. C
116
,
24695
(
2012
).
33.
J.-H.
Wang
,
C. S.
Lee
, and
M. C.
Lin
,
J. Phys. Chem. C
113
,
6681
(
2009
).
34.
N. H.
de Leeuw
and
C. J.
Nelson
,
J. Phys. Chem. B
107
,
3528
(
2003
).
35.
M. C.
DePonte
,
J. A.
Wilke
,
D. T.
Boyle
,
M. Z.
Gillum
,
D. A.
Schlosser
,
V. H.
Lam
,
H.
Kaleem
,
E. M.
Maxwell
, and
A. E.
Baber
,
Surf. Sci.
680
,
1
(
2019
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
37.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
38.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T. A.
Arias
,
SoftwareX
6
,
278
(
2017
).
39.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
40.
J. R.
Rumble
,
CRC Handbook of Chemistry and Physics
100th edition (
CRC
,
Boca Raton
,
FL
,
2003
).
41.
A. M.
de Jong
and
J. W.
Niemantsverdriet
,
Surf. Sci.
233
,
355
(
1990
).
43.
S. L.
Tait
,
Z.
Dohnálek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
122
,
164708
(
2005
).
44.
S. L.
Tait
,
Z.
Dohnálek
,
C. T.
Campbell
, and
B. D.
Kay
,
J. Chem. Phys.
125
,
234308
(
2006
).
45.
C. T.
Campbell
and
J. R. V.
Sellers
,
Chem. Rev.
113
,
4106
(
2013
).
46.
Z.
Li
,
R. S.
Smith
,
B. D.
Kay
, and
Z.
Dohnálek
,
J. Phys. Chem. C
115
,
22534
(
2011
).
47.
C. T.
Campbell
and
J. R. V.
Sellers
,
J. Am. Chem. Soc.
134
,
18109
(
2012
).
49.
A. L.
Schwaner
and
J. M.
White
,
J. Phys. Chem. B
101
,
10414
(
1997
).
50.
H. G.
Jenniskens
,
P. W. F.
Dorlandt
,
M. F.
Kadodwala
, and
A. W.
Kleyn
,
Surf. Sci.
357–358
,
624
(
1996
).
51.
M. L.
Liriano
 et al.,
J. Chem. Phys.
149
,
034703
(
2018
).
52.
S. D.
Senanayake
,
J. A.
Rodriguez
, and
D.
Stacchiola
,
Top. Catal.
56
,
1488
(
2013
).
53.
S. D.
Senanayake
,
K.
Mudiyanselage
,
A.
Bruix
,
S.
Agnoli
,
J.
Hrbek
,
D.
Stacchiola
, and
J. A.
Rodriguez
,
J. Phys. Chem. C
118
,
25057
(
2014
).
54.
See supplementary material at https://dx.doi.org/10.1116/1.5142020 for tabulated DFT adsorption energies and geometries.

Supplementary Material

You do not currently have access to this content.