Atmospheric pressure plasma jets have great potential for the surface modification of polymers. In this work, the authors report on polystyrene etching by a radio frequency driven atmospheric pressure plasma jet with a focus on the role of H, O, and OH radicals in this process. The absolute flux of H, O, and OH radicals reaching the surface of the polymer was determined by a comsol multiphysics reacting fluid dynamics model incorporating detailed transport phenomena in the boundary layer near the substrate. The simulated results of H and OH densities in the jet effluent were experimentally verified by two-photon absorption laser induced fluorescence and laser induced fluorescence, respectively. The carbon atom removal flux from the polystyrene surface was taken from previously reported measurements using the same plasma source. The authors show that the boundary layer effects in the interfacial region above the substrate can have a significant impact on the calculated etching probabilities. The reaction probability (β) has a significant uncertainty although a variation of 2 orders of magnitude in β leads to uncertainties of approximately 1 order of magnitude variation in the determined etching probability. The etching probability of polystyrene by OH radicals was confirmed to be at least an order of magnitude larger than the polystyrene etching probability by O radicals. The authors also confirmed the weak polystyrene etching probability by H radicals. The model suggests that the presence of a 30 ppm O2 impurity can lead to the production of OH radicals in the far effluent of the Ar+1%H2 plasma jet close to the substrate at sufficient densities to enable effective etching.

1.
P.
Favia
and
R.
d’Agostino
,
Surf. Coatings Technol.
98
,
1102
(
1998
).
2.
C.-M.
Chan
,
Polymer Surface Modification and Characterization
(
Carl Hanser
,
Cincinnati, Ohio
,
1994
).
3.
M.
Nitschke
,
G.
Schmack
,
A.
Janke
,
F.
Simon
,
D.
Pleul
, and
C.
Werner
,
J. Biomed. Mater. Res.
59
,
632
(
2002
).
4.
M.
Wertheimer
,
A.
Fozza
, and
A.
Holländer
,
Nucl. Instrum. Methods Phys. Res. Sect. B
151
,
65
(
1999
).
5.
E.
Liston
,
L.
Martinu
, and
M.
Wertheimer
,
J. Adhes. Sci. Technol.
7
,
1091
(
1993
).
6.
C.-M.
Chan
,
T.-M.
Ko
, and
H.
Hiraoka
,
Surf. Sci. Rep.
24
,
1
(
1996
).
7.
S.
Sapieha
,
J.
Cerny
,
J.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Adhes.
42
,
91
(
1993
).
8.
M.
Shenton
and
G.
Stevens
,
J. Phys. D Appl. Phys.
34
,
2761
(
2001
).
9.
P. J.
Bruggeman
,
F.
Iza
, and
R.
Brandenburg
,
Plasma Sources Sci. Technol.
26
,
123002
(
2017
).
10.
J. H.
Lee
,
H. G.
Kim
,
G. S.
Khang
,
H. B.
Lee
, and
M. S.
Jhon
,
J. Colloid Interface Sci.
151
,
563
(
1992
).
11.
C.
Sun
,
D.
Zhang
, and
L. C.
Wadsworth
,
Adv. Polym. Technol.
18
,
171
(
1999
).
12.
C.
Kim
,
J.
Evans
, and
D.
Goring
,
J. Appl. Polym. Sci.
15
,
1365
(
1971
).
13.
A.
Carradò
,
O.
Sokolova
,
B.
Donnio
, and
H.
Palkowski
,
J. Appl. Polym. Sci.
120
,
3709
(
2011
).
14.
J.
Winter
,
R.
Brandenburg
, and
K.
Weltmann
,
Plasma Sources Sci. Technol.
24
,
064001
(
2015
).
15.
D.-X.
Liu
,
P.
Bruggeman
,
F.
Iza
,
M.-Z.
Rong
, and
M. G.
Kong
,
Plasma Sources Sci. Technol.
19
,
025018
(
2010
).
16.
A.
Bourdon
,
T.
Darny
,
F.
Pechereau
,
J.-M.
Pouvesle
,
P.
Viegas
,
S.
Iséni
, and
E.
Robert
,
Plasma Sources Sci. Technol.
25
,
035002
(
2016
).
17.
K. P.
Arjunan
,
A.
Obrusník
,
B. T.
Jones
,
L.
Zajíčková
, and
S.
Ptasinska
,
Plasma Process. Polym.
13
,
1089
(
2016
).
18.
A.
Schmidt-Bleker
,
J.
Winter
,
A.
Bösel
,
S.
Reuter
, and
K.-D.
Weltmann
,
Plasma Sources Sci. Technol.
25
,
015005
(
2015
).
19.
D.
Shaw
,
A.
West
,
J.
Bredin
, and
E.
Wagenaars
,
Plasma Sources Sci. Technol.
25
,
065018
(
2016
).
20.
J.
Ehlbeck
,
U.
Schnabel
,
M.
Polak
,
J.
Winter
,
T.
Von Woedtke
,
R.
Brandenburg
,
T.
Von dem Hagen
, and
K.
Weltmann
,
J. Phys. D Appl. Phys.
44
,
013002
(
2010
).
21.
R.
Wang
,
Y.
Shen
,
C.
Zhang
,
P.
Yan
, and
T.
Shao
,
Appl. Surf. Sci.
367
,
401
(
2016
).
22.
P.
Luan
,
A. J.
Knoll
,
P. J.
Bruggeman
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
35
,
05C315
(
2017
).
23.
P.
Luan
,
V. S. K.
Kondeti
,
A. J.
Knoll
,
P. J.
Bruggeman
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
37
,
031305
(
2019
).
24.
R.
Dorai
and
M. J.
Kushner
,
J. Phys. D Appl. Phys.
36
,
666
(
2003
).
25.
A. J.
Knoll
,
P.
Luan
,
E. A.
Bartis
,
V. S.
Kondeti
,
P. J.
Bruggeman
, and
G. S.
Oehrlein
,
Plasma Process. Polym.
13
,
1069
(
2016
).
26.
V. S. S.
K. Kondeti
,
U.
Gangal
,
S.
Yatom
, and
P. J.
Bruggeman
,
J. Vac. Sci. Technol. A
35
,
061302
(
2017
).
27.
V. S. K.
Kondeti
,
C. Q.
Phan
,
K.
Wende
,
H.
Jablonowski
,
U.
Gangal
,
J. L.
Granick
,
R. C.
Hunter
, and
P. J.
Bruggeman
,
Free Radical Biol. Med.
124
,
275
(
2018
).
28.
A.
Brahme
,
Z.
Chang
,
N.
Zhao
,
V. S. K.
Kondeti
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
51
,
414002
(
2018
).
29.
H.
Taghvaei
,
V.
Kondeti
, and
P. J.
Bruggeman
,
Plasma Chem. Plasma Process.
39
,
729
(
2019
).
30.
T.
Verreycken
,
R.
Mensink
,
R.
Van Der Horst
,
N.
Sadeghi
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
22
,
055014
(
2013
).
31.
S.
Yatom
,
Y.
Luo
,
Q.
Xiong
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
50
,
415204
(
2017
).
32.
K.
Niemi
,
V.
Schulz-Von Der Gathen
, and
H.
Döbele
,
J. Phys. D Appl. Phys.
34
,
2330
(
2001
).
33.
G. J.
Fiechtner
and
J. R.
Gord
,
J. Q. Spectrosc. Radiat. Transfer
68
,
543
(
2001
).
34.
J.
Bittner
,
K.
Kohse-Höinghaus
,
U.
Meier
, and
T.
Just
,
Chem. Phys. Lett.
143
,
571
(
1988
).
35.
K.
Dzierżȩga
,
U.
Volz
,
G.
Nave
, and
U.
Griesmann
,
Phys. Rev. A
62
,
022505
(
2000
).
36.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.6.1) [National Institute of Standards and Technology, Gaithersburg, MD (2018)], see https://physics.nist.gov/asd (last accessed June 5, 2019).
37.
R. B.
Miles
,
W. R.
Lempert
, and
J. N.
Forkey
,
Meas. Sci. Technol.
12
,
R33
(
2001
).
38.
E.
Van Doremaele
,
V.
Kondeti
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
27
,
095006
(
2018
).
39.
R.
Thalman
,
K. J.
Zarzana
,
M. A.
Tolbert
, and
R.
Volkamer
,
J. Q. Spectrosc. Radiat. Transfer
147
,
171
(
2014
).
40.
A.
Van Gessel
,
E.
Carbone
,
P.
Bruggeman
, and
J.
Van der Mullen
,
Plasma Sources Sci. Technol.
21
,
015003
(
2012
).
41.
Y.
Yue
,
V.
Santosh
,
K.
Kondeti
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
29
,
04LT01
(
2020
).
42.
43.
D.
Baulch
et al.,
J. Phys. Chem. Ref. Data
21
,
411
(
1992
).
44.
W.
Tsang
and
R.
Hampson
,
J. Phys. Chem. Ref. Data
15
,
1087
(
1986
).
45.
R.
Atkinson
,
D.
Baulch
,
R.
Cox
,
J.
Crowley
,
R.
Hampson
,
R.
Hynes
,
M.
Jenkin
,
M.
Rossi
, and
J.
Troe
,
Atmosp. Chem. Phys.
4
,
1461
(
2004
).
46.
J. T.
Herron
and
D. S.
Green
,
Plasma Chem. Plasma Process.
21
,
459
(
2001
).
47.
J.
Woodall
,
M.
Agúndez
,
A.
Markwick-Kemper
, and
T.
Millar
,
Astron. Astrophys.
466
,
1197
(
2007
).
48.
S.
Avtaeva
,
A.
General
, and
V.
Kel’man
,
J. Phys. D Appl. Phys.
43
,
315201
(
2010
).
49.
R.
Atkinson
,
D.
Baulch
,
R.
Cox
,
R.
Hampson
, Jr.,
J.
Kerr
, and
J.
Troe
,
J. Phys. Chem. Ref. Data
21
,
1125
(
1992
).
50.
A.
Bogaerts
,
Spectrochim. Acta Part B Atomic Spectrosc.
64
,
1266
(
2009
).
51.
R. F.
Hampson
and
D.
Garvin
, Reaction Rate and Photochemical Data for Atmospheric Chemistry, 1977 (U.S. Department of Commerce, National Bureau of Standards, Washington, DC, 1978), p. 513, see https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication513.pdf.
52.
J.
Gallagher
,
E.
Beaty
,
J.
Dutton
, and
L.
Pitchford
,
J. Phys. Chem. Ref. Data
12
,
109
(
1983
).
53.
C.
Verlackt
,
W.
Van Boxem
, and
A.
Bogaerts
,
Phys. Chem. Chem. Phys.
20
,
6845
(
2018
).
54.
D.
Liu
,
T.
He
,
Z.
Liu
,
S.
Wang
,
Z.
Liu
,
M.
Rong
, and
M. G.
Kong
,
Plasma Process. Polym.
15
,
1800057
(
2018
).
55.
W.
Van Gaens
,
P.
Bruggeman
, and
A.
Bogaerts
,
New J. Phys.
16
,
063054
(
2014
).
56.
K.
Wende
et al.,
Biointerphases
10
,
029518
(
2015
).
57.
C.
Wilke
,
J. Chem. Phys.
18
,
517
(
1950
).
58.
D.
Schröder
,
H.
Bahre
,
N.
Knake
,
J.
Winter
,
T.
De Los Arcos
, and
V.
Schulz-Von Der Gathen
,
Plasma Sources Sci. Technol.
21
,
024007
(
2012
).
59.
S.
Schneider
,
J.
Lackmann
,
F.
Narberhaus
,
J.
Bandow
,
B.
Denis
, and
J.
Benedikt
,
J. Phys. D Appl. Phys.
44
,
295201
(
2011
).
60.
Y.
Agari
and
T.
Uno
,
J. Appl. Polym. Sci.
32
,
5705
(
1986
).
61.
G.
Cartry
,
L.
Magne
, and
G.
Cernogora
,
J. Phys. D Appl. Phys.
32
,
L53
(
1999
).
62.
P.
Macko
,
P.
Veis
, and
G.
Cernogora
,
Plasma Sources Sci. Technol.
13
,
251
(
2004
).
63.
S.
Gomez
,
P.
Steen
, and
W.
Graham
,
Appl. Phys. Lett.
81
,
19
(
2002
).
64.
R.
Zaplotnik
,
A.
Vesel
, and
M.
Mozetič
,
Plasma Process. Polym.
15
,
1800021
(
2018
).
65.
M.
Suh
,
P. S.
Bagus
,
S.
Pak
,
M. P.
Rosynek
, and
J. H.
Lunsford
,
J. Phys. Chem. B
104
,
2736
(
2000
).
66.
K.
Bogart
,
J.
Cushing
, and
E. R.
Fisher
,
J. Phys. Chem. B
101
,
10016
(
1997
).
67.
P. R.
McCurdy
,
K.
Bogart
,
N.
Dalleska
, and
E. R.
Fisher
,
Rev. Sci. Instrum.
68
,
1684
(
1997
).
68.
E. R.
Fisher
,
P.
Ho
,
W. G.
Breiland
, and
R. J.
Buss
,
J. Phys. Chem.
97
,
10287
(
1993
).
69.
W.
Smith
,
J. Chem. Phys.
11
,
110
(
1943
).
70.
Y. C.
Kim
and
M.
Boudant
,
J. Appl. Phys.
70
,
5667
(
1991
).
71.
R.
Remorov
,
Y. M.
Gershenzon
,
L.
Molina
, and
M.
Molina
,
J. Phys. Chem. A
106
,
4558
(
2002
).
72.
A. C.
Baldwin
and
D. M.
Golden
,
Science
206
,
562
(
1979
).
73.
S.
Zhang
,
A.
Sobota
,
E.
Van Veldhuizen
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
48
,
015203
(
2014
).
74.
S.
Zhang
,
A.
Van Gessel
,
S.
Van Grootel
, and
P. J.
Bruggeman
,
Plasma Sources Sci. Technol.
23
,
025012
(
2014
).
75.
D.
Ellerweg
,
J.
Benedikt
,
A.
von Keudell
,
N.
Knake
, and
V.
Schulz-von der Gathen
,
New J. Phys.
12
,
013021
(
2010
).
76.
S.
Zhang
,
W.
Van Gaens
,
B.
van Gessel
,
S.
Hofmann
,
E.
van Veldhuizen
,
A.
Bogaerts
, and
P.
Bruggeman
,
J. Phys. D Appl. Phys.
46
,
205202
(
2013
).
77.
J. S.
Sousa
,
K.
Niemi
,
L.
Cox
,
Q. T.
Algwari
,
T.
Gans
, and
D.
O’Connell
,
J. Appl. Phys.
109
,
123302
(
2011
).
78.
S.
Zhang
, Atmospheric Pressure RF Plasma Jet: Characterization of Flow and O2 Chemistry (
Technische Universiteit Eindhoven
,
Eindhoven, Netherlands
,
2015
).
79.
J. Y.
Jeong
,
J.
Park
,
I.
Henins
,
S. E.
Babayan
,
V. J.
Tu
,
G. S.
Selwyn
,
G.
Ding
, and
R. F.
Hicks
,
J. Phys. Chem. A
104
,
8027
(
2000
).
80.
Y.
Luo
,
A. M.
Lietz
,
S.
Yatom
,
M. J.
Kushner
, and
P. J.
Bruggeman
,
J. Phys. D Appl. Phys.
52
,
044003
(
2018
).
81.
T.
Verreycken
and
P.
Bruggeman
,
Plasma Chem. Plasma Process.
34
,
605
(
2014
).
82.
A.
Rahman
,
A.
Yalin
,
V.
Surla
,
O.
Stan
,
K.
Hoshimiya
,
Z.
Yu
,
E.
Littlefield
, and
G.
Collins
,
Plasma Sources Sci. Technol.
13
,
537
(
2004
).
83.
Y.
Yue
,
X.
Pei
, and
X.
Lu
,
J. Appl. Phys.
119
,
033301
(
2016
).
You do not currently have access to this content.