A study of plasma polymerization of cyclopropylamine in a low-pressure cylindrical magnetron reactor is presented. Both experimental and numerical approaches are used to investigate thin film growth mechanisms and polymer film properties depending on the magnetic field strength. Combining both approaches enables the consistency of the numerical model to be checked while acquiring data for understanding the observed phenomena. Samples are first analyzed by x-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry, and ion beam analysis to illustrate the differences in degrees of chemical functionalization and cross-linking between the regions of high and low magnetic fields. 3D particle-in-cell Monte Carlo collision simulations are then performed to shed light on experimental results, after implementing a set of electron-cyclopropylamine collision cross sections computed using the R-matrix method. The simulations enable the main radicals produced in the discharge to be tracked by determining their production rates, how they diffuse in the plasma, and how they absorb on the reactor walls. Additionally, the cyclopropylamine ion (C3H7N+) behavior is followed to bring insights into the respective roles of ions and radicals during the plasma polymerization process.

1.
A.
Choukourov
,
H.
Biederman
,
D.
Slavinska
,
L.
Hanley
,
A.
Grinevich
,
H.
Boldyryeva
, and
A.
Mackova
,
J. Phys. Chem. B
109
,
23086
(
2005
).
2.
H. J.
Griesser
,
R. C.
Chatelier
,
T. R.
Gengenbach
,
G.
Johnson
, and
J. G.
Steele
,
J. Biomater. Sci. Polym. Ed.
5
,
531
(
1994
).
3.
K. S.
Siow
,
L.
Britcher
,
S.
Kumar
, and
H. J.
Griesser
,
Plasma Process. Polym.
3
,
392
(
2006
).
4.
F.
Khelifa
,
S.
Ershov
,
Y.
Habibi
,
R.
Snyders
, and
P.
Dubois
,
Chem. Rev.
116
,
3975
(
2016
).
5.
D.
Cossement
,
F.
Renaux
,
D.
Thiry
,
S.
Ligot
,
R.
Francq
, and
R.
Snyders
,
Appl. Surf. Sci.
355
,
842
(
2015
).
6.
J.
Dorst
,
M.
Vandenbossche
,
M.
Amberg
,
L.
Bernard
,
P.
Rupper
,
K. D.
Weltmann
,
K.
Fricke
, and
D.
Hegemann
,
Langmuir
33
,
10736
(
2017
).
7.
D.
Thiry
,
S.
Konstantinidis
,
J.
Cornil
, and
R.
Snyders
,
Thin Solid Films
606
,
19
(
2016
).
8.
S.-H.
Seo
,
J.-H.
In
, and
H.-Y.
Chang
,
Plasma Sources Sci. Technol.
13
,
409
(
2004
).
9.
S.-H.
Seo
,
J.-H.
In
,
H.-Y.
Chang
, and
J.-G.
Han
,
J. Appl. Phys.
98
,
043301
(
2005
).
10.
P.
Sigurjonsson
and
J. T.
Gudmundsson
,
J. Phys. Conf. Ser.
100
,
062018
(
2008
).
11.
M.
Shen
and
A. T.
Bell
, “
A review of recent advances in plasma polymerization
,” in
Plasma Polymerization
(
American Chemical Society
,
Washington
,
DC
,
1979
), Vol. 108, p.
1
.
12.
H.
Yasuda
,
Plasma Polymerization
(
Academic
,
Orlando
,
FL
,
1985
).
13.
R.
d’Agostino
,
Plasma Deposition, Treatment, and Etching of Polymers
(
Academic
,
San Diego
,
CA
,
1990
).
14.
A.
Michelmore
,
P.
Gross-Kosche
,
S. A.
Al-Bataineh
,
J. D.
Whittle
, and
R. D.
Short
,
Langmuir
29
,
2595
(
2013
).
15.
A. J.
Beck
,
S.
Candan
,
R. D.
Short
,
A.
Goodyear
, and
N. S. J.
Braithwaite
,
J. Phys. Chem. B
105
,
5730
(
2001
).
16.
A.
Michelmore
,
J. D.
Whittle
, and
R. D.
Short
,
Front. Phys
.
3
,
3
(
2015
).
17.
M.
Mao
and
A.
Bogaerts
,
J. Phys. D Appl. Phys.
43
,
205201
(
2010
).
18.
S.
Candan
,
A. J.
Beck
,
L.
O’Toole
,
R. D.
Short
,
A.
Goodyear
, and
N. St. J.
Braithwaite
,
Phys. Chem. Chem. Phys.
1
,
3117
(
1999
).
19.
D. B.
Haddow
,
R. M.
France
,
R. D.
Short
,
J. W.
Bradley
, and
D.
Barton
,
Langmuir
16
,
5654
(
2000
).
20.
A.
Michelmore
,
D. A.
Steele
,
D. E.
Robinson
,
J. D.
Whittle
, and
R. D.
Short
,
Soft Matter
9
,
6167
(
2013
).
21.
D.
Hegemann
,
E.
Körner
,
N.
Blanchard
,
M.
Drabik
, and
S.
Guimond
,
Appl. Phys. Lett.
101
,
211603
(
2012
).
22.
C.
Rigaux
,
F.
Tichelaar
,
P.
Louette
,
J. L.
Colaux
, and
S.
Lucas
,
Surf. Coat. Technol.
205
,
S601
(
2011
).
23.
S.
Mathioudaki
,
B.
Barthélémy
,
S.
Detriche
,
C.
Vandenabeele
,
J.
Delhalle
,
Z.
Mekhalif
, and
S.
Lucas
,
ACS Appl. Nano Mater.
1
,
3464
(
2018
).
24.
L.
Denis
,
P.
Marsal
,
Y.
Olivier
,
T.
Godfroid
,
R.
Lazzaroni
,
M.
Hecq
,
J.
Cornil
, and
R.
Snyders
,
Plasma Process. Polym.
7
,
172
(
2010
).
25.
A.
Manakhov
,
L.
Zajíčková
,
M.
Eliáš
,
J.
Čechal
,
J.
Polčák
,
J.
Hnilica
,
Š
Bittnerová
, and
D.
Nečas
,
Plasma Process. Polym.
11
,
532
(
2014
).
26.
A.
Manakhov
,
P.
Skládal
,
D.
Nečas
,
J.
Čechal
,
J.
Polčák
,
M.
Eliáš
, and
L.
Zajíčková
,
Phys. Status Solidi A
211
,
2801
(
2014
).
27.
A.
Manakhov
,
D.
Nečas
,
J.
Čechal
,
D.
Pavliňák
,
M.
Eliáš
, and
L.
Zajíčková
,
Thin Solid Films
581
,
7
(
2015
).
28.
A.
Manakhov
,
E.
Makhneva
,
P.
Skládal
,
D.
Nečas
,
J.
Čechal
,
L.
Kalina
,
M.
Eliáš
, and
L.
Zajíčková
,
Appl. Surf. Sci.
360
,
28
(
2016
).
29.
E.
Makhneva
,
A.
Manakhov
,
P.
Skládal
, and
L.
Zajíčková
,
Surf. Coat. Technol.
290
,
116
(
2016
).
30.
L.
Štrbková
,
A.
Manakhov
,
L.
Zajíčková
,
A.
Stoica
,
P.
Veselý
, and
R.
Chmelík
,
Surf. Coat. Technol.
295
,
70
(
2016
).
31.
A.
Manakhov
,
M.
Landová
,
J.
Medalová
,
M.
Michlíček
,
J.
Polčák
,
D.
Nečas
, and
L.
Zajíčková
,
Plasma Process. Polym.
14
,
1600123
(
2017
).
32.
C.
Vandenabeele
,
M.
Buddhadasa
,
P.-L.
Girard-Lauriault
, and
R.
Snyders
,
Thin Solid Films
630
,
100
(
2017
).
33.
M.
Buddhadasa
,
C. R.
Vandenabeele
,
R.
Snyders
, and
P.-L.
Girard-Lauriault
,
Plasma Process. Polym.
14
,
1700030
(
2017
).
34.
W. Z.
Collison
,
T. Q.
Ni
, and
M. S.
Barnes
,
J. Vac. Sci. Technol. A
16
,
100
(
1998
).
35.
C. S.
Corr
,
E.
Despiau-Pujo
,
P.
Chabert
,
W. G.
Graham
,
F. G.
Marro
, and
D. B.
Graves
,
J. Phys. D Appl. Phys.
41
,
185202
(
2008
).
36.
A.
Hurlbatt
,
A. R.
Gibson
,
S.
Schröter
,
J.
Bredin
,
A. P. S.
Foote
,
P.
Grondein
,
D.
O’Connell
, and
T.
Gans
,
Plasma Process. Polym.
14
,
1600138
(
2017
).
37.
A.
Bogaerts
,
E.
Bultinck
,
M.
Eckert
,
V.
Georgieva
,
M.
Mao
,
E.
Neyts
, and
L.
Schwaederlé
,
Plasma Process. Polym.
6
,
295
(
2009
).
38.
S.
Stoykov
,
C.
Eggs
, and
U.
Kortshagen
,
J. Phys. D Appl. Phys.
34
,
2160
(
2001
).
39.
M.
Mao
,
J.
Benedikt
,
A.
Consoli
, and
A.
Bogaerts
,
J. Phys. D Appl. Phys.
41
,
225201
(
2008
).
40.
Y.
Miyagawa
,
H.
Nakadate
,
M.
Tanaka
,
M.
Ikeyama
,
S.
Nakao
, and
S.
Miyagawa
,
Surf. Coat. Technol.
201
,
8414
(
2007
).
41.
D. A.
Ariskin
,
I. V.
Schweigert
,
A. L.
Alexandrov
,
A.
Bogaerts
, and
F. M.
Peeters
,
J. Appl. Phys.
105
,
063305
(
2009
).
42.
K.
Ostrikov
,
H.-J.
Yoon
,
A. E.
Rider
, and
S. V.
Vladimirov
,
Plasma Process. Polym.
4
,
27
(
2007
).
43.
V. N.
Volynets
,
A. V.
Lukyanova
,
A. T.
Rakhimov
,
D. I.
Slovetsky
, and
N. V.
Suetin
,
J. Phys. D Appl. Phys.
26
,
647
(
1993
).
44.
E.
Gogolides
,
M.
Stathakopoulos
, and
A.
Boudouvis
,
J. Phys. D Appl. Phys.
27
,
1878
(
1994
).
45.
Y.-R.
Zhang
,
S.
Tinck
,
P. D.
Schepper
,
Y.-N.
Wang
, and
A.
Bogaerts
,
J. Vac. Sci. Technol. A
33
,
021310
(
2015
).
46.
A. L.
Alexandrov
and
I. V.
Schweigert
,
Plasma Sources Sci. Technol.
14
,
209
(
2005
).
47.
H. C.
Thejaswini
,
S.
Peglow
,
U.
Martens
,
V.
Sushkov
, and
R.
Hippler
,
Contrib. Plasma Phys.
54
,
683
(
2014
).
48.
S.-X.
Zhao
,
Y.-R.
Zhang
,
F.
Gao
,
Y.-N.
Wang
, and
A.
Bogaerts
,
J. Appl. Phys.
117
,
243303
(
2015
).
49.
H. C.
Kim
,
F.
Iza
,
S. S.
Yang
,
M.
Radmilović-Radjenović
, and
J. K.
Lee
,
J. Phys. D Appl. Phys.
38
,
R283
(
2005
).
50.
D. J.
Economou
,
Plasma Process. Polym.
14
,
1600152
(
2017
).
51.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics Via Computer Simulation
(
Taylor & Francis
,
London
,
2005
).
52.
D.
Tskhakaya
,
K.
Matyash
,
R.
Schneider
, and
F.
Taccogna
,
Contrib. Plasma Phys.
47
,
563
(
2007
).
53.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
Oxford
,
1994
).
54.
C.
Schwanke
,
A.
Pflug
,
M.
Siemers
, and
B.
Szyszka
, “
Parallel particle-in-cell Monte-Carlo algorithm for simulation of gas discharges under PVM and MPI
,” in
Lecture Notes in Computer Science
, edited by
K.
Jónasson
(
Springer
,
Berlin
,
2010
), Vol. 7133, p.
213
.
55.
S.
Mathioudaki
,
C.
Vandenabeele
,
R.
Tonneau
,
A.
Pflug
, and
S.
Lucas
,
J. Vac. Sci. Technol. A
37
,
031301
(
2019
).
57.
C. R.
Vandenabeele
and
S.
Lucas
,
Mater. Sci. Eng. R
139
,
100521
(
2020
).
58.
D.
Graham
, Spectragui, NESAC/BIO, 2014, https://www.nb.uw.edu/mvsa/spectragui.
59.
J. E.
Jackson
,
A User’s Guide to Principal Components
(
Wiley
,
New York
,
2005
).
60.
D. J.
Graham
and
B. D.
Ratner
,
Langmuir
18
,
5861
(
2002
).
61.
C.
Jeynes
,
N. P.
Barradas
,
P. K.
Marriott
,
G.
Boudreault
,
M.
Jenkin
,
E.
Wendler
, and
R. P.
Webb
,
J. Phys. D Appl. Phys.
36
,
R97
(
2003
).
62.
A. F.
Gurbich
,
Nucl. Instrum. Methods Phys. Res. B
371
,
27
(
2016
).
63.
Y.-K.
Kim
and
M. E.
Rudd
,
Phys. Rev. A
50
,
3954
(
1994
).
64.
N. F.
Mott
and
R. H.
Fowler
,
Proc. R. Soc. Lond. Ser. A
126
,
259
(
1930
).
66.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
2
,
242
(
2012
).
67.
M.-Y.
Song
,
J.-S.
Yoon
,
H.
Cho
,
Y.
Itikawa
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
, and
J.
Tennyson
,
J. Phys. Chem. Ref. Data
44
,
023101
(
2015
).
68.
M.-Y.
Song
,
J.-S.
Yoon
,
H.
Cho
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
, and
J.
Tennyson
,
J. Phys. Chem. Ref. Data
46
,
013106
(
2017
).
69.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
I.
Halow
,
S. M.
Bailey
, and
R. H.
Schumm
,
Selected Values of Chemical Thermodynamic Properties. Tables for the First Thirty-Four Elements in the Standard Order of Arrangement
(
Institute for Basic Standards, National Bureau of Standards
,
Washington
,
DC
,
1968
).
70.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
I.
Halow
,
S. M.
Bailey
, and
R. H.
Schumm
,
Selected Values of Chemical Thermodynamic Properties. Tables for Elements 35-53 in the Standard Order of Arrangement
(
Institute for Basic Standards, National Bureau of Standards
,
Washington
,
DC
,
1969
).
71.
V. H.
Dibeler
and
S. K.
Liston
,
J. Chem. Phys.
48
,
4765
(
1968
).
72.
R. F.
Pottie
and
F. P.
Lossing
,
J. Am. Chem. Soc.
85
,
269
(
1963
).
73.
74.
Y.-R.
Luo
, “
Bond dissociation energies
,” in
CRC Handbook of Chemistry and Physics
, 89th ed., edited by
D. R.
Lide
(
CRC/Taylor and Francis
,
Boca Raton
,
FL
,
2009
).
75.
W. D.
Good
and
R. T.
Moore
,
J. Chem. Thermodyn.
3
,
701
(
1971
).
76.
T. L.
Cottrell
,
The Strength of Chemical Bonds
(
Butterworths
,
London
,
1954
).
77.
S. W.
Benson
,
J. Chem. Educ.
42
,
502
(
1965
).
78.
L.
Brewer
,
W. T.
Hicks
, and
O. H.
Krikorian
,
J. Chem. Phys.
36
,
182
(
1962
).
79.
V. I.
Vedeneev
,
Bond Energies, Ionization Potentials and Electron Affinities
(
St. Martin’s
,
New York
,
1966
), 202 p.
80.
J. R.
Hamilton
,
J.
Tennyson
,
S.
Huang
, and
M. J.
Kushner
,
Plasma Sources Sci. Technol.
26
,
065010
(
2017
).
81.
P. G.
Burke
,
R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes
(
Springer
,
Berlin
,
2011
).
82.
J. M.
Carr
 et al,
Eur. Phys. J. D
66
,
58
(
2012
).
83.
J.
Tennyson
,
D. B.
Brown
,
J. J.
Munro
,
I.
Rozum
,
H. N.
Varambhia
, and
N.
Vinci
,
J. Phys. Conf. Ser.
86
,
012001
(
2007
).
84.
W. J.
Brigg
,
J.
Tennyson
, and
M.
Plummer
,
J. Phys. B At. Mol. Opt. Phys.
47
,
185203
(
2014
).
85.
N.
Sanna
and
F. A.
Gianturco
,
Comput. Phys. Commun.
114
,
142
(
1998
).
86.
R. D.
Johnson
 III
, “NIST Computational Chemistry Comparison and Benchmark DataBase,” NIST Standard Reference Database Number 101 (National Institute of Standards and Technology, Gaithersburg, MD,
2018
), see http://cccbdb.nist.gov/.
87.
D. K.
Hendricksen
and
M. D.
Harmony
,
J. Chem. Phys.
51
,
700
(
1969
).
88.
A.
Faure
and
J.
Tennyson
,
Mon. Not. R. Astron. Soc.
325
,
443
(
2001
).
89.
A.
Pflug
,
M.
Siemers
,
C.
Schwanke
,
B.
Febty Kurnia
,
V.
Sittinger
, and
B.
Szyszka
,
Mater. Technol.
26
,
10
(
2011
).
90.
A.
Pflug
,
M.
Siemers
,
T.
Melzig
,
L.
Schäfer
, and
G.
Bräuer
,
Surf. Coat. Technol.
260
,
411
(
2014
).
91.
A.
Pflug
,
M.
Siemers
,
T.
Melzig
,
D.
Rademacher
,
T.
Zickenrott
, and
M.
Vergöhl
,
Surf. Coat. Technol.
241
,
45
(
2014
).
92.
A.
Pflug
,
M.
Höfer
,
T.
Harig
,
M.
Armgardt
,
C.
Britze
,
M.
Siemers
,
T.
Melzig
, and
L.
Schäfer
,
Thin Solid Films
595
,
266
(
2015
).
93.
C.
Geuzaine
and
J.-F.
Remacle
,
Int. J. Numer. Methods Eng.
79
,
1309
(
2009
).
94.
C. A.
Brebbia
and
R.
Magureanu
,
Eng. Anal.
4
,
178
(
1987
).
95.
K.
Koura
and
H.
Matsumoto
,
Phys. Fluids A
3
,
2459
(
1991
).
96.
C.
Vandenabeele
,
R.
Maurau
,
S.
Bulou
,
F.
Siffer
,
M.
Gérard
,
T.
Belmonte
, and
P.
Choquet
,
Plasma Process. Polym.
11
,
1089
(
2014
).
97.
M. E.
Moustapha
,
J. F.
Friedrich
,
Z. R.
Farag
,
S.
Krüger
,
G.
Hidde
, and
M. M.
Azzam
, “
Promotion of adhesion of green flame retardant coatings onto polyolefins by depositing ultra-thin plasma polymer films
,” in
Progress in Adhesion and Adhesives
, edited by
K.
Mittal
(
Wiley
,
Hoboken
,
NJ
,
2017
), p.
399
.
98.
S.
Zhang
,
X.
Lam Bui
,
X. T.
Zeng
, and
X.
Li
,
Thin Solid Films
482
,
138
(
2005
).
99.
R. F.
Bunshah
,
Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications
(
Noyes
,
Park Ridge
,
NJ
,
1994
).
100.
M.
Ohring
,
Materials Science of Thin Films
(
Elsevier Science
,
New York
,
2001
).
101.
A. V.
Naumkin
,
A.
Kraut-Vas
,
S. W.
Gaarenstroom
, and
C. J.
Powell
, “NIST X-ray Photoelectron Spectroscopy Database,” Version 4.1 (National Institute of Standards and Technology, Gaithersburg, MD,
2012
), see https://srdata.nist.gov/xps/.
102.
A.
Nelson
,
B. W.
Muir
,
J.
Oldham
,
C.
Fong
,
K. M.
McLean
,
P. G.
Hartley
,
S. K.
Øiseth
, and
M.
James
,
Langmuir
22
,
453
(
2006
).
103.
C.
Hopf
,
T.
Schwarz-Selinger
,
W.
Jacob
, and
A. V.
Keudell
,
J. Appl. Phys.
87
,
2719
(
2000
).
104.
J.
Ryssy
,
E.
Prioste-Amaral
,
D. F. N.
Assuncao
,
N.
Rogers
,
G. T. S.
Kirby
,
L. E.
Smith
, and
A.
Michelmore
,
Phys. Chem. Chem. Phys.
18
,
4496
(
2016
).
105.
106.
W. H.
Weinberg
,
Acc. Chem. Res.
29
,
479
(
1996
).
You do not currently have access to this content.