In the gate-recess formation process, normally-off operation is achieved by removing the barrier layer by dry etching to reduce the two-dimensional-electron-gas concentration under the gate electrode. An atomic-layer defect-free etching of GaN is thus indispensable to achieve high-frequency, high-power, and normally-off operation. More-precise atomic-layer defect-free GaN etching was investigated by using an HBr neutral beam. This investigation found that the HBr neutral beam could achieve more-precise atomic-layer etching than the Cl2 neutral beam because the HBr chemistry can control the reactivity of atomic-layer etching by forming a thinner and less-volatile reaction layer.

1.
N.
Michailow
,
M.
Matthé
,
I. S.
Gaspar
,
A. N.
Caldevilla
,
L. L.
Mendes
,
A.
Festag
, and
G.
Fettweis
,
IEEE Trans. Commun.
62
,
3045
(
2014
).
2.
R.
Cortés
,
X.
Bonnaire
,
O.
Marin
, and
P.
Sens
,
Procedia Comput. Sci.
52
,
1004
(
2015
).
3.
C. S.
Aleman
,
N.
Pissinou
,
S.
Alemany
,
K.
Boroojeni
,
J.
Miller
, and
Z.
Ding
, presented at the Workshop on Computing, Networking and Communications, Maui, HI, 5–8 March 2018.
4.
R. S.
Pengelly
,
S. M.
Wood
,
J. W.
Milligan
,
S. T.
Sheppard
, and
W. L.
Pribble
,
IEEE Trans. Microw. Theory Technol.
60
,
1764
(
2012
).
5.
M.
Ishida
,
T.
Ueda
,
T.
Tanaka
, and
D.
Ueda
,
IEEE Trans. Electron Devices
60
,
3053
(
2013
).
6.
N. M.
Shrestha
,
Y.
Li
, and
E. Y.
Chang
,
J. Comput. Electron.
15
,
154
(
2016
).
7.
W.
Saito
,
Y.
Takada
,
M.
Kuraguchi
,
K.
Tsuda
, and
I.
Omura
,
IEEE Trans. Electron Devices
53
,
356
(
2006
).
8.
R.
Wang
 et al.,
IEEE Electron Device Lett.
31
,
1383
(
2010
).
9.
T.
Mizutani
,
Y.
Ohno
,
M.
Akita
,
S.
Kishimoto
, and
K.
Maezawa
,
IEEE Trans. Electron Devices
50
,
2015
(
2003
).
10.
F.
Hemmi
,
C.
Thomas
,
Y.-C.
Lai
,
A.
Higo
,
Y.
Watamura
,
S.
Samukawa
,
T.
Otsuji
, and
T.
Suemitsu
,
Solid⋅State Electron.
137
,
1
(
2017
).
11.
N. M.
Shrestha
,
Y.
Li
,
T.
Suemitsu
, and
S.
Samukawa
,
IEEE Trans. Electron Devices
66
,
1694
(
2019
).
12.
S.
Samukawa
,
K.
Sakamoto
, and
K.
Ichiki
,
Jpn. J. Appl. Phys.
40
, Pt. 2
,
L997
(
2001
).
13.
S.
Samukawa
,
Appl. Surf. Sci.
253
,
6681
(
2007
).
14.
S.
Samukawa
,
K.
Sakamoto
, and
K.
Ichiki
,
Jpn. J. Appl. Phys.
40
, Pt. 2,
L779
(
2001
).
15.
S.
Noda
,
H.
Nishimori
,
T.
Ida
,
T.
Arikado
,
K.
Ichiki
,
T.
Ozaki
, and
S.
Samukawa
,
J. Vac. Sci. Technol. A
22
,
1506
(
2004
).
16.
T.
Ohno
,
D.
Nakayama
,
T.
Okada
, and
S.
Samukawa
,
Results Phys.
8
,
169
(
2018
).
17.
C.
Thomas
,
Y.
Tamura
,
M. E.
Syazwan
,
A.
Higo
, and
S.
Samukawa
,
J. Phys. D Appl. Phys.
47,
215203
(
2014
).
18.
S.
Samukawa
,
Jpn. J. Appl. Phys.
45
,
2395
(
2006
).
19.
A.
Wada
,
K.
Endo
,
M.
Masahara
,
C.-H.
Huang
, and
S.
Samukawa
,
Appl. Phys. Lett.
98,
203111
(
2011
).
20.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
21.
B.
Brunetti
,
V.
Piacente
, and
P.
Scardala
,
J. Chem. Eng. Data
54
,
2273
(
2009
).
22.
B.
Brunetti
,
V.
Piacente
, and
P.
Scardala
,
J. Chem. Eng. Data
55
,
98
(
2010
).
23.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
24.
J. L.
Bourque
,
M. C.
Biesinger
, and
K. M.
Baines
,
Dalton Trans.
45
,
7678
(
2016
).
25.
M.
Kočan
,
A.
Rizzi
,
H.
Lüth
,
S.
Keller
, and
U. K.
Mishra
,
Phys. Status Solidi B
234
,
773
(
2002
).
You do not currently have access to this content.