In the gate-recess formation process, normally-off operation is achieved by removing the barrier layer by dry etching to reduce the two-dimensional-electron-gas concentration under the gate electrode. An atomic-layer defect-free etching of GaN is thus indispensable to achieve high-frequency, high-power, and normally-off operation. More-precise atomic-layer defect-free GaN etching was investigated by using an HBr neutral beam. This investigation found that the HBr neutral beam could achieve more-precise atomic-layer etching than the Cl2 neutral beam because the HBr chemistry can control the reactivity of atomic-layer etching by forming a thinner and less-volatile reaction layer.
REFERENCES
1.
N.
Michailow
, M.
Matthé
, I. S.
Gaspar
, A. N.
Caldevilla
, L. L.
Mendes
, A.
Festag
, and G.
Fettweis
, IEEE Trans. Commun.
62
, 3045
(2014
). 2.
R.
Cortés
, X.
Bonnaire
, O.
Marin
, and P.
Sens
, Procedia Comput. Sci.
52
, 1004
(2015
). 3.
C. S.
Aleman
, N.
Pissinou
, S.
Alemany
, K.
Boroojeni
, J.
Miller
, and Z.
Ding
, presented at the Workshop on Computing, Networking and Communications, Maui, HI, 5–8 March 2018.4.
R. S.
Pengelly
, S. M.
Wood
, J. W.
Milligan
, S. T.
Sheppard
, and W. L.
Pribble
, IEEE Trans. Microw. Theory Technol.
60
, 1764
(2012
). 5.
M.
Ishida
, T.
Ueda
, T.
Tanaka
, and D.
Ueda
, IEEE Trans. Electron Devices
60
, 3053
(2013
). 6.
N. M.
Shrestha
, Y.
Li
, and E. Y.
Chang
, J. Comput. Electron.
15
, 154
(2016
). 7.
W.
Saito
, Y.
Takada
, M.
Kuraguchi
, K.
Tsuda
, and I.
Omura
, IEEE Trans. Electron Devices
53
, 356
(2006
). 8.
R.
Wang
et al., IEEE Electron Device Lett.
31
, 1383
(2010
). 9.
T.
Mizutani
, Y.
Ohno
, M.
Akita
, S.
Kishimoto
, and K.
Maezawa
, IEEE Trans. Electron Devices
50
, 2015
(2003
). 10.
F.
Hemmi
, C.
Thomas
, Y.-C.
Lai
, A.
Higo
, Y.
Watamura
, S.
Samukawa
, T.
Otsuji
, and T.
Suemitsu
, Solid⋅State Electron.
137
, 1
(2017
). 11.
N. M.
Shrestha
, Y.
Li
, T.
Suemitsu
, and S.
Samukawa
, IEEE Trans. Electron Devices
66
, 1694
(2019
). 12.
S.
Samukawa
, K.
Sakamoto
, and K.
Ichiki
, Jpn. J. Appl. Phys.
40
, Pt. 2
, L997
(2001
). 13.
S.
Samukawa
, Appl. Surf. Sci.
253
, 6681
(2007
). 14.
S.
Samukawa
, K.
Sakamoto
, and K.
Ichiki
, Jpn. J. Appl. Phys.
40
, Pt. 2, L779
(2001
). 15.
S.
Noda
, H.
Nishimori
, T.
Ida
, T.
Arikado
, K.
Ichiki
, T.
Ozaki
, and S.
Samukawa
, J. Vac. Sci. Technol. A
22
, 1506
(2004
). 16.
T.
Ohno
, D.
Nakayama
, T.
Okada
, and S.
Samukawa
, Results Phys.
8
, 169
(2018
). 17.
C.
Thomas
, Y.
Tamura
, M. E.
Syazwan
, A.
Higo
, and S.
Samukawa
, J. Phys. D Appl. Phys.
47,
215203
(2014
). 18.
S.
Samukawa
, Jpn. J. Appl. Phys.
45
, 2395
(2006
). 19.
A.
Wada
, K.
Endo
, M.
Masahara
, C.-H.
Huang
, and S.
Samukawa
, Appl. Phys. Lett.
98,
203111
(2011
). 20.
A.
Bondi
, J. Phys. Chem.
68
, 441
(1964
). 21.
B.
Brunetti
, V.
Piacente
, and P.
Scardala
, J. Chem. Eng. Data
54
, 2273
(2009
). 22.
B.
Brunetti
, V.
Piacente
, and P.
Scardala
, J. Chem. Eng. Data
55
, 98
(2010
). 23.
I.
Vurgaftman
and J. R.
Meyer
, J. Appl. Phys.
94
, 3675
(2003
). 24.
J. L.
Bourque
, M. C.
Biesinger
, and K. M.
Baines
, Dalton Trans.
45
, 7678
(2016
). 25.
M.
Kočan
, A.
Rizzi
, H.
Lüth
, S.
Keller
, and U. K.
Mishra
, Phys. Status Solidi B
234
, 773
(2002
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.