Nanolaminated aluminum oxide (Al2O3)/hafnium oxide (HfO2) thin films as well as single Al2O3 and HfO2 layers have been grown as gate dielectrics by the plasma enhanced atomic layer deposition technique on silicon carbide (4H-SiC) substrates. All the three dielectric films have been deposited at a temperature as low as 250 °C, with a total thickness of about 30 nm, and, in particular, the nanolaminated Al2O3/HfO2 films have been fabricated by alternating nanometric Al2O3 and HfO2 layers. The structural characteristics and dielectric properties of the nanolaminated Al2O3/HfO2 films have been evaluated and compared to those of the parent Al2O3 and HfO2 single layers. Moreover, the structural properties and their evolution upon annealing treatment at 800 °C have been investigated as a preliminar test for their possible implementation in the device fabrication flow chart. On the basis of the collected data, the nanolaminated films demonstrated to possess promising dielectric behavior with respect to the simple oxide layers.

1.
B. J.
Baliga
,
Silicon Carbide Power Devices
(
World Scientific
, Singapore
,
2005
).
2.
J.
Kelly
,
G. R.
Fisher
, and
P.
Barnes
,
Mater. Res. Bull.
40
,
249
(
2007
).
3.
T.
Kimoto
,
Jpn. J. Appl. Phys.
54
,
040103
(
2015
).
4.
F.
Roccaforte
,
P.
Fiorenza
,
G.
Greco
,
M.
Vivona
,
R.
Lo Nigro
,
F.
Giannazzo
,
A.
Patti
, and
M.
Saggio
,
Appl. Surf. Sci.
301
,
9
(
2014
).
5.
G.
Liu
,
B. R.
Tuttle
, and
S.
Dhar
,
Appl. Phys. Rev.
2
,
021307
(
2015
).
6.
F.
Roccaforte
,
P.
Fiorenza
,
G.
Greco
,
R.
Lo Nigro
,
F.
Giannazzo
,
F.
Iucolano
, and
M.
Saggio
,
Microelectron. Eng.
187–188
,
66
(
2018
).
7.
F.
Zhang
 et al.,
J. Appl. Phys.
113
,
044112
(
2013
).
8.
M.
Avice
,
U.
Grossner
,
I.
Pintilie
,
B. G.
Svensson
,
M.
Servidori
,
R.
Nipoti
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Appl. Phys.
102
,
054513
(
2007
).
9.
H.
Moriya
,
S.
Hino
,
N.
Miura
,
T.
Oomori
, and
E.
Tokumitsu
,
Mater. Sci. Forum.
615–617
,
777
(
2009
).
10.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
11.
R. K.
Chanana
,
K.
McDonald
,
M.
Di Ventra
,
S. T.
Pantelides
,
L. C.
Feldman
,
G. Y.
Chung
,
C. C.
Tin
,
J. R.
Williams
, and
R. A.
Weller
,
Appl. Phys. Lett.
77
,
2560
(
2000
).
12.
P.
Fiorenza
,
A.
Frazzetto
,
A.
Guarnera
,
M.
Saggio
, and
F.
Roccaforte
,
Appl. Phys. Lett.
105
,
142108
(
2014
).
13.
J.
Robertson
,
J. Vac. Sci. Technol. B
18
,
1785
(
2000
).
14.
F.
Roccaforte
,
P.
Fiorenza
,
G.
Greco
,
R.
Lo Nigro
,
F.
Giannazzo
,
A.
Patti
, and
M.
Saggio
,
Phys. Status Solidi A
211
,
2063
(
2014
).
15.
R.
Singh
,
Microelectron. Reliab.
46
,
713
(
2006
).
16.
R.
Lo Nigro
,
E.
Schilirò
,
G.
Greco
,
P.
Fiorenza
, and
F.
Roccaforte
,
Thin Solid Films
601
,
68
(
2016
).
17.
M.
Knez
,
K.
Nielsch
, and
K. L.
Niinisto
,
Adv. Mater.
19
,
3425
(
2007
).
18.
H.
Zhang
,
R.
Solanki
,
B.
Roberds
,
G.
Bai
, and
I.
Banerjee
,
J. Appl. Phys.
87
,
1921
(
2000
).
19.
K.
Kukli
,
M.
Ritala
, and
M.
Leskela
,
J. Electrochem. Soc.
148
,
F35
(
2001
).
20.
M.-H.
Cho
 et al.,
Appl. Phys. Lett.
81
,
1071
(
2002
).
21.
H. S.
Chang
,
H.
Hwang
,
M.-H.
Cho
,
D. W.
Moon
,
S. Y. J.
Doh
,
J. H.
Lee
, and
N. I.
Lee
,
Appl. Phys. Lett.
84
,
28
(
2004
).
22.
H.
Jin
,
S. K.
Oh
,
H. J.
Kang
,
S. W.
Lee
,
Y. S.
Lee
, and
K. J.
Lim
,
J. Korean Phys. Soc.
46
,
S52
(
2005
).
23.
H.
Jin
,
H. J.
Kang
,
S. W.
Lee
,
Y. S.
Lee
,
S. K.
Rha
,
H. S.
Lee
, and
K. J.
Lim
,
J. Korean Phys. Soc.
45
,
1292
(
2004
).
24.
P. K.
Park
,
E.-S.
Cha
, and
S. W.
Kang
,
Appl. Phys. Lett.
90
,
232906
(
2007
).
25.
P. K.
Park
,
H.-I.
Cho
,
H. C.
Choi
,
Y.-H.
Bae
,
C.-S.
Lee
,
J.-L.
Lee
, and
J.-H.
Lee
,
Jpn. J. Appl. Phys.
43
,
L1433
(
2004
).
26.
Y.
Yue
,
Y.
Hao
,
J.
Zhang
,
J.
Ni
,
W.
Nao
,
O.
Feng
, and
L.
Liu
,
IEEE Electron. Device Lett.
29
,
838
(
2008
).
27.
C.
Kirkpatrick
,
B.
Lee
,
X.
Yang
, and
V.
Misra
,
Phys. Status Solidi C
7–8
,
2445
(
2011
).
28.
B.
Lee
,
Y. H.
Choi
,
C.
Kirkpatrick
,
A. O.
Huang
, and
V.
Misra
,
Semicond. Sci. Technol.
28
,
074016
(
2013
).
29.
R.
Suri
,
C. J.
Kirkpatrick
,
D. J.
Lichtenwalner
, and
V.
Misra
,
Appl. Phys. Lett.
96
,
042903
(
2010
).
30.
F.
Zhao
,
O.
Amnuayphol
, and
K.-Y.
Cheong
,
Mater. Lett.
245
,
174
(
2019
).
31.
M.
Usman
,
C.
Henkel
, and
A.
Hallen
,
ECS J. Solid State Sci.
2
,
N3087
(
2013
).
32.
R.
Foest
,
M.
Schmidt
, and
H.
Gargouri
,
Eur. Phys. J. D
68
,
23
(
2014
).
33.
R.
Lo Nigro
,
E.
Schilirò
,
C.
Tudisco
,
G. G.
Condorelli
,
P.
Fiorenza
,
H.
Gargouri
, and
F.
Roccaforte
, 2014 IEEE 9th Nanotechnology Materials and Devices Conference (NMDC), Aci Castello, Italy, 12–15 October 2014 (IEEE, New York, 2014), p. 112.
34.
E.
Schilirò
,
R.
Lo Nigro
,
P.
Fiorenza
, and
F.
Roccaforte
,
AIP Adv.
6
,
075201
(
2016
).
35.
R.
Lo Nigro
,
E.
Schilirò
,
G.
Mannino
,
S.
Di Franco
, and
F.
Roccaforte
,
J. Cryst. Growth
539
,
125624
(
2020
).
36.
X.-Y.
Zhang
,
C.-H.
Hsu
,
Y.-S.
Cho
,
S.
Zhang
,
S.-Y.
Lien
,
W.-Z.
Zhu
, and
F.-B.
Xiong
,
Thin Solid Films
660
,
797
(
2018
).
37.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
,
T.
Prohaska
,
G.
Friedbacher
, and
M.
Grasserbauer
,
Thin Solid Films
72
,
250
(
1994
).
You do not currently have access to this content.