High-quality Pt thin films are prepared by atomic layer deposition (ALD) using metal-organic precursors dimethyl-(N,N-dimethyl-3-butene-1-amine-N) platinum (C8H19NPt) and with diluted molecular oxygen (O2) as a reactant. The films are grown at a relatively low temperature of 225 °C on a thermally grown SiO2 substrate, and the process shows all the necessary qualities of an ideal ALD such as self-limiting growth characteristics and a well-defined ALD temperature window between 200 and 250 °C. Noticeably, the current ALD-Pt process shows a very high growth per cycle of 0.167 nm without an incubation period at 225 °C, and perfect conformality is obtained at a dual trench structure (top and bottom width: 40 and 15 nm) with an aspect ratio of around 6.3. The resistivity of the ALD-Pt film at ∼39 nm in thickness deposited at 225 °C is almost the same (∼10.8 μΩ cm) as its bulk resistivity (10.6 μΩ cm), and it is as low as ∼12 μΩ cm at 25 nm in thickness. Comprehensive analyses using x-ray photoelectron spectroscopy, x-ray diffractometry, transmission electron microscopy (TEM), and x-ray reflectance indicate that the extremely low resistivity of ALD-Pt is due to the formation of highly pure and polycrystalline films with high density (∼21.04 g/cm3) and large grain size (∼48 nm for 25 nm thick film). For comparison, ALD-Ru is deposited at the same equipment and deposition temperature, 225 °C, using (ethylbenzene)(1,3-butadiene)Ru(0) (C12H16Ru) and diluted O2 as the reactant. The higher resistivity of ∼20 μΩ cm at a similar thickness (∼23.5 nm) with ALD-Pt is obtained, which is much higher than its bulk value (7.6 μΩ cm). TEM analysis suggests that the formation of relatively smaller-sized grains of ALD-Ru is the main reason for it.

1.
K. C.
Saraswat
and
F.
Mohammadi
,
IEEE Trans. Electron Devices
29
,
645
(
1982
).
2.
M. T.
Bohr
,
IEEE Proceedings International Electron Devices Meeting
,
Washington, DC
,
10–13 December 1995
(
IEEE
,
New York
,
1995
), p.
241
.
3.
Y. A. A.
Vyas
,
C.
Zhou
, and
C. Y.
Yang
,
IEEE Trans. Nanotechnol.
17
,
4
(
2018
).
4.
W.
Steinhögl
,
G.
Schindler
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
,
J. Appl. Phys.
97
,
023706
(
2005
).
5.
W. M. R.
Baklanov
,
C.
Adelmann
,
L.
Zhao
, and
S.
De Gendt
,
ECS J. Solid State Sci. Technol.
4
,
Y1
(
2015
).
6.
K.
Holloway
and
P. M.
Fryer
,
Appl. Phys. Lett.
57
,
1736
(
1990
).
7.
K.-H.
Min
,
K.-C.
Chun
, and
K.-B.
Kim
,
J. Vac. Sci. Technol. B.
14
,
3263
(
1996
).
8.
T.
Oku
,
E.
Kawakami
,
M.
Uekubo
,
K.
Takahiro
,
S.
Yamaguchi
, and
M.
Murakami
,
Appl. Surf. Sci.
99
,
265
(
1996
).
9.
M. Y.
Kwak
,
D. H.
Shin
,
T. W.
Kang
, and
K. N.
Kim
,
Thin Solid Films
339
,
290
(
1999
).
10.
T.
Laurila
,
K.
Zeng
,
J. K.
Kivilahti
,
J.
Molarius
, and
I.
Suni
,
Thin Solid Films
373
,
64
(
2000
).
11.
K.
Weiss
,
S.
Riedel
,
S. E.
Schulz
,
M.
Schwerd
,
H.
Helneder
,
H.
Wendt
, and
T.
Gessner
,
Microelectron. Eng.
50
,
433
(
2000
).
12.
P. J.
Stout
,
D.
Zhang
,
S.
Rauf
, and
P. L. G.
Ventzek
,
J. Vac. Sci. Technol. B
20
,
2421
(
2002
).
13.
T.
Cheon
,
S.-H.
Choi
,
S.-H.
Kim
, and
D.-H.
Kang
,
Electrochem. Solid State Lett.
14
,
D57
(
2011
).
14.
H.-J.
Lee
,
T. E.
Hong
, and
S.-H.
Kim
,
J. Alloys Compd.
686
,
1025
(
2016
).
15.
S.
Dutta
,
S.
Kundu
,
A.
Gupta
,
G.
Jamieson
,
J. F. G.
Granados
,
J.
Bömmels
,
C. J.
Wilson
,
Z.
Tokei
, and
C.
Adelmann
,
IEEE Electron Device Lett.
38
,
949
(
2017
).
16.
L. G.
Wen
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference
,
San Jose, CA
,
23–26 May 2016
(
IEEE
,
New York
,
2016
), p.
34
.
17.
O. V.
Pedreira
 et al.,
IEEE International Reliability Physics Symposium Proceedings
,
Monterey, CA
,
2–6 April 2017
(
IEEE
,
New York
,
2017
), p.
6B2.1
.
18.
C.
Adelmann
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference
,
Santa Clara, CA
,
4–7 June 2018
(
IEEE
,
New York
,
2018
), p.
154
.
19.
H.
Ren
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference
,
Santa Clara, CA
,
4–7 June 2018
(
IEEE
,
New York
,
2018
), p.
12
.
20.
C.
Auth
 et al.,
IEEE International Electron Devices Meeting IEDM
,
San Francisco, CA
,
1–5 December 2018
(
IEEE
,
New York
,
2018
), Vol. 17, p.
673
.
21.
X.
Zhang
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference/Advanced Metallization Conference
,
San Jose, CA
,
23–26 May 2016
(
IEEE
,
New York
,
2016
), p.
31
.
22.
C.
Adelmann
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference/Advanced Metallization Conference
,
San Jose, CA
,
20–23 May 2014
(
IEEE
,
New York
,
2014
), p.
173
.
23.
S.
Dutta
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference
, ,
Hsinchu, Taiwan
,
16–18 May 2017
(
IEEE
,
New York
,
2017
), p.
2
.
24.
L. G.
Wen
 et al.,
ACS Appl. Mater. Interfaces
8
,
26119
(
2016
).
25.
P.
Kapur
,
G.
Chandra
,
J. P.
McVittie
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
49
,
590
(
2002
).
26.
S. M.
Rossnagel
and
T. S.
Kuan
,
J. Vac. Sci. Technol. B
22
,
240
(
2004
).
27.
J. J.
Plombon
,
E.
Andideh
,
V. M.
Dubin
, and
J.
Maiz
,
Appl. Phys. Lett.
89
,
113124
(
2006
).
28.
A.
Mallikarjunan
,
S.
Sharma
, and
S. P.
Murarka
,
Electrochem. Solid State Lett.
3
,
437
(
2000
).
29.
W.
Steinhögl
,
G.
Schindler
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
30.
S.
Maîtrejean
,
R.
Gers
,
T.
Mourier
,
A.
Toffoli
, and
G.
Passemard
,
Microelectron. Eng.
83
,
2396
(
2006
).
31.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
32.
S.
Yeo
,
J. Y.
Park
,
S. J.
Lee
,
D. J.
Lee
,
J. H.
Seo
, and
S.-H.
Kim
,
Microelectron. Eng.
137
,
16
(
2015
).
33.
W.-J.
Lee
,
Z.
Wan
,
C.-M.
Kim
,
I.-K.
Oh
,
R.
Harada
,
K.
Suzuki
,
E.-A.
Choi
, and
S.-H.
Kwon
,
Chem. Mater.
31
,
5056
(
2019
).
34.
H. C. M.
Knoops
,
A. J. M.
Mackus
,
M. E.
Donders
,
M. C. M.
Van De Sanden
,
P. H. L.
Notten
, and
W. M. M.
Kessels
,
ECS Trans.
16
,
209
(
2008
).
35.
J.
Hämäläinen
,
F.
Munnik
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
20
,
6840
(
2008
).
36.
S.
Dutta
,
K.
Sankaran
,
K.
Moors
,
G.
Pourtois
,
S.
Van Elshocht
,
J.
Bömmels
,
W.
Vandervorst
,
Z.
Tokei
, and
C.
Adelmann
,
J. Appl. Phys.
122
,
025107
(
2017
).
37.
S.-H.
Kim
 et al.,
J. Electrochem. Soc.
154
,
435
(
2007
).
38.
S.-H.
Choi
,
T.
Cheon
,
S.-H.
Kim
,
D.-H.
Kang
,
G.-S.
Park
, and
S.
Kim
,
J. Electrochem. Soc.
158
,
D351
(
2011
).
39.
T. E.
Hong
,
S.-H.
Choi
,
S.
Yeo
,
J.-Y.
Park
,
S.-H.
Kim
,
T.
Cheon
,
H.
Kim
,
M.-K.
Kim
, and
H.
Kim
,
ECS J. Solid State Sci. Technol.
2
,
P47
(
2013
).
40.
S.
Yeo
,
S. H.
Choi
,
J. Y.
Park
,
S.-H.
Kim
,
T.
Cheon
,
B. Y.
Lim
, and
S.
Kim
,
Thin Solid Films
546
,
2
(
2013
).
41.
P. B.
Barna
and
M.
Adamik
,
Thin Solid Films
317
,
27
(
1998
).
You do not currently have access to this content.