Atomic layer deposition (ALD) offers a viable route for the growth of thin and conformal films over 3D topographies and is becoming attractive as a method to grow films thin enough, and with sufficient dielectric constants (k), for the fabrication of next-generation dynamic random memories. The authors used ALD to grow thin (≤15 nm) BaxSr1 − xTiO3 (BST) films that are epitaxially integrated to SrTiO3 (001) (STO) and Nb-doped SrTiO3 (001) (Nb:STO). Films of three compositions, which are x ∼ 0.7, 0.5, and 0.3, and thicknesses of 7.8–14.9 nm were grown at 1.05 Torr and 225 °C using barium bis(triisopropylcyclopentadienyl), strontium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and H2O. Film compositions were controlled by changing cycle ratios (Ba:Sr, Ba:Ti, and Sr:Ti) and confirmed by in situ x-ray photoelectron spectroscopy. Films were amorphous as-deposited and required postdeposition vacuum annealing at 650–710 °C to crystallize. Epitaxy was confirmed with x-ray diffraction and transmission electron microscopy. Only BST (00l) out-of-plane diffraction signals were detected. Capacitance-voltage (C-V) measurements revealed that BST thin films grown by ALD have dielectric constant values ranging from 210 for Ba0.71Sr0.26TiO3 to 368 for Ba0.48Sr0.43TiO3.

1.
D. E.
Kotecki
,
J. D.
Baniecki
,
H.
Shen
,
R. B.
Laibowitz
,
K. L.
Saenger
,
J. J.
Lian
, and
R.
Wise
,
IBM J. Res. Dev.
43
,
367
(
1999
).
2.
C. S.
Hwang
,
J. Appl. Phys.
92
,
432
(
2002
).
3.
E. N.
Bunting
,
G. R.
Shelton
, and
A. S.
Creamer
,
J. Res. Natl. Bur. Stand.
38
,
337
(
1947
).
4.
T.
Remmel
,
R.
Gregory
, and
B.
Baumert
,
Adv. X-Ray Anal.
41
,
38
(
1999
).
5.
C. S.
Hwang
,
S. O.
Park
,
H.
Cho
,
C. S.
Kang
,
H.
Kang
,
S. I.
Lee
, and
M. Y.
Lee
,
Appl. Phys. Lett.
67
,
2819
(
1995
).
6.
B. T.
Lee
and
C. S.
Hwang
,
Appl. Phys. Lett.
77
,
124
(
2000
).
7.
J.
Oh
,
T.
Moon
,
T.
Kim
,
C.
Kim
,
J. H.
Lee
,
S. Y.
Lee
, and
B.
Park
,
Curr. Appl. Phys.
7
,
168
(
2007
).
8.
K.
Abe
and
S.
Komatsu
,
J. Appl. Phys.
77
,
6461
(
1995
).
9.
C. B.
Parker
,
J.-P.
Maria
, and
A. I.
Kingon
,
Appl. Phys. Lett.
81
,
340
(
2002
).
10.
C.
Basceri
,
S. K.
Streiffer
,
A. I.
Kingon
, and
R.
Waser
,
J. Appl. Phys.
82
,
2497
(
1997
).
11.
M.
Tyunina
,
M.
Plekh
,
J.
Levoska
,
M.
Vehkamäki
,
M.
Hatanpää
,
M.
Ritala
, and
M.
Leskelä
,
Integr. Ferroelectr.
102
,
29
(
2008
).
12.
S. K.
Kim
,
S. W.
Lee
,
J. H.
Han
,
B.
Lee
,
S.
Han
, and
C. S.
Hwang
,
Adv. Funct. Mater.
20
,
2989
(
2010
).
13.
Y.
Kim
,
P.
Schindler
,
A. L.
Dadlani
,
S.
Acharya
,
J.
Provine
,
J.
An
, and
F. B.
Prinz
,
Acta Mater.
117
,
153
(
2016
).
14.
P.
Schindler
,
Y.
Kim
,
D.
Thian
,
J.
An
, and
F. B.
Prinz
,
Scr. Mater.
111
,
106
(
2016
).
15.
J.
An
,
T.
Usui
,
M.
Logar
,
J.
Park
,
D.
Thian
,
S.
Kim
, and
Fritz B.
Prinz
,
ACS Appl. Mater. Inter.
6
,
10656
(
2014
).
16.
M. D.
McDaniel
,
A.
Posadas
,
T. Q.
Ngo
,
A.
Dhamdhere
,
D. J.
Smith
,
A. A.
Demkov
, and
J. G.
Ekerdt
,
J. Vac. Sci. Technol. A
31
,
01A136
(
2013
).
17.
M. D.
McDaniel
,
T. Q.
Ngo
,
A.
Posadas
,
C.
Hu
,
S.
Lu
,
D. J.
Smith
, and
J. G.
Ekerdt
,
Adv. Mater. Interfaces
1
,
1400081
(
2014
).
18.
E. L.
Lin
,
A. B.
Posadas
,
H. W.
Wu
,
D. J.
Smith
,
A. A.
Demkov
, and
J. G.
Ekerdt
,
J. Cryst. Growth
476
,
6
(
2017
).
19.
E. L.
Lin
,
S.
Hu
, and
J. G.
Ekerdt
,
Proc. SPIE
10105
,
1010519
(
2017
).
20.
N. D.
Foster
,
B. I.
Edmondson
,
J. G.
Ekerdt
,
D. J.
Smith
, and
M. C.
Downer
,
AIP Adv.
9
,
025312
(
2019
).
21.
T. M.
Shaw
,
Z.
Suo
,
M.
Huang
,
E.
Liniger
,
R. B.
Laibowitz
, and
J. D.
Baniecki
,
Appl. Phys. Lett.
75
,
2129
(
1999
).
22.
M. D.
McDaniel
,
A.
Posadas
,
T.
Wang
,
A. A.
Demkov
, and
J. G.
Ekerdt
,
Thin Solid Films
520
,
6525
(
2012
).
23.
K.
Ozdogan
,
M. U.
Kahaly
,
S. R. S.
Kumar
,
H. N.
Alshareef
, and
U.
Schwingenschlögl
,
J. Appl. Phys.
111
,
054313
(
2012
).
24.
M.
Yoshimoto
,
H.
Ohkubo
,
N.
Kanda
, and
H.
Koinuma
,
Jpn. J. Appl. Phys.
31
,
3664
(
1992
).
25.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perkin-Elmer
,
Eden Prairie
,
1992
).
26.
S.
Hasegawa
, in
Characterization of Materials Reflection
, edited by
E. N.
Kaufmann
(
Wiley
,
Hoboken
,
2012
), pp.
1925
1938
.
27.
R.
Ayouchi
,
F.
Martin
,
J. R.
Ramos-Barrado
, and
D.
Leinen
,
Surf. Interface Anal.
30
,
565
(
2000
).
28.
S. M.
Mukhopadhyay
and
T. C. S.
Chen
,
J. Mater. Res.
10
,
1502
(
1995
).
29.
C. C.
Hung
and
R. E.
Riman
,
KONA Powder Part. J.
8
,
99
(
1990
).
30.
H.
Jena
,
V. K.
Mittal
,
S.
Bera
,
S. V.
Narasimhan
,
K. V. G.
Kutty
, and
T. R. N.
Kutty
,
Appl. Surf. Sci.
254
,
7074
(
2008
).
31.
M.
Andrea
,
H.
Bluhm
,
R.
Dittmann
,
C. M.
Schneider
,
R.
Waser
,
D. N.
Mueller
, and
F.
Gunkel
,
Phys. Rev. Mater.
3
,
044604
(
2019
).
32.
J.
Balluff
,
M.
Meinert
,
J.
Schmalhorst
,
G.
Reiss
, and
E.
Arenholz
,
J. Appl. Phys.
118
,
243907
(
2015
).
33.
P. M. J.
Marée
,
J. C.
Barbour
,
J. F.
van der Veen
,
K. L.
Kavanagh
,
C. W. T.
Bulle-Lieuwma
, and
M. P. A.
Viegers
,
J. Appl. Phys.
62
,
4413
(
1987
).
34.
V.
Lo
,
W. W.
Chung
,
H.
Cao
, and
X.
Dai
,
J. Appl. Phys.
104
,
064105
(
2008
).
35.
Y.
Choi
,
T.
Hoshina
,
H.
Takeda
, and
T.
Tsurumi
,
Jpn. J. Appl. Phys.
50
,
031504
(
2011
).
36.
R. A.
McKee
,
F. J.
Walker
, and
M. F.
Chisholm
,
Science
293
,
468
(
2001
).
37.
K.
Takagi
and
T.
Ono
,
Jpn. J. Appl. Phys.
57
,
066501
(
2018
).
38.
M.
Popovici
,
S. V.
Elshocht
,
N.
Menou
,
J.
Swerts
,
D.
Pierreux
,
A.
Delabie
, and
J. A.
Kittl
,
Symposium C—CMOS Gate-Stack Scaling–Materials, Interfaces and Reliability Implications
,
San Francisco, CA
,
14 April 2009
(
Cambridge University Press
,
Cambridge
,
2009
), Vol. 1155, p. C08-03.
39.
H. M.
Gupta
and
R. J.
Van Overstraeten
,
J. Appl. Phys.
46
,
2675
(
1975
).
You do not currently have access to this content.