Al2O3/plasma polymer multilayers were developed and characterized for the moisture barrier films of flexible organic devices. The inorganic Al2O3 thin films were deposited by a spatial atomic layer deposition process and the organic layers were deposited by plasma polymerization in the same chamber using CHF3, benzene, and cyclohexane precursors. The deposition rate, light transmittance, and surface roughness of the plasma polymer films obtained from the three precursors were investigated. The three plasma polymer layers were introduced between Al2O3 layers and their effect on the water permeability and flexibility of each Al2O3/plasma polymer multilayer structure was evaluated. The multilayer structure with hydrocarbon from cyclohexane shows better flexibility than that with fluorocarbon by CHF3 and hydrocarbon by benzene. Polymer interlayers with plasma thicker than 20 nm are necessary for reasonable flexibility. The authors increased the number of layers up to 21 to improve the water permeability and flexibility. The water vapor transmission rate (WVTR) of a 100 nm-thick Al2O3/plasma polymer was reduced to 8.5 × 10−5 g/m2 day with the 21-layer structure. This WVTR value is 58% lower than that of the 100 nm-thick single-layer Al2O3. The WVTR of a 100 nm-thick single-layer Al2O3 increased by 900% when it was bent 1000 times with a bending radius of 1 cm due to film cracks, while, under the same conditions, the 21-layer structure showed only a 32% increase in the WVTR. These results indicate that the nanometer-scale-thick plasma polymer can be an effective solution for multilayer moisture barrier films.

1.
J.-S.
Park
,
H.
Chae
,
H. K.
Chung
, and
S. I.
Lee
,
Semicond. Sci. Technol.
26
,
034001
(
2011
).
2.
J. S.
Lewis
and
M. S.
Weaver
,
IEEE J. Sel. Top. Quantum Electron.
10
,
45
(
2004
).
3.
M.
Schaer
,
F.
Nüesch
,
D.
Berner
,
W.
Leo
, and
L.
Zuppiroli
,
Adv. Funct. Mater.
11
,
116
(
2001
).
4.
Y.-Q.
Yang
,
Y.
Duan
,
P.
Chen
,
F.-B.
Sun
,
Y.-H.
Duan
,
X.
Wang
, and
D.
Yang
,
J. Phys. Chem. C
117
,
20308
(
2013
).
5.
L.
Qi
,
C.
Zhang
, and
Q.
Chen
,
Plasma Sci. Technol.
16
,
45
(
2014
).
6.
S. W.
Choi
,
C. M.
Jang
,
D. Y.
Kim
,
J. S.
Ha
,
H. S.
Park
,
W. Y.
Koh
, and
C. S.
Lee
,
J. Korean Phys. Soc.
42
,
975
(
2003
).
7.
D.
Kim
,
H.
Kang
,
J.-M.
Kim
, and
H.
Kim
,
Appl. Surf. Sci.
257
,
3776
(
2011
).
8.
A.
Kobayashi
,
N.
Tsuji
,
A.
Fukazawa
, and
N.
Kobayashi
,
Thin Solid Films
520
,
3994
(
2012
).
9.
G.-J.
Choi
,
S. K.
Kim
,
S.-J.
Won
,
H. J.
Kim
, and
C. S.
Hwang
,
J. Electrochem. Soc.
156
,
G138
(
2009
).
10.
J. L.
van Hemmen
,
S. B. S.
Heil
,
J. H.
Klootwijk
,
F.
Roozeboom
,
C. J.
Hodson
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
154
,
G165
(
2007
).
11.
H.
Liu
,
Y.-F.
Liu
,
P.-P.
Xiong
,
P.
Chen
,
H.-Y.
Li
,
J.-W.
Hou
,
B.-N.
Kang
, and
Y.
Duan
,
IEEE T. Nanotechnol.
16
,
634
(
2017
).
12.
Y. I.
Lee
,
N. J.
Jeon
,
B. J.
Kim
,
H.
Shim
,
T.-Y.
Yang
,
S. I.
Seok
,
J.
Seo
, and
S. G.
Im
,
Adv. Energy Mater.
8
,
1701928
(
2018
).
13.
S. H.
Yong
,
S. J.
Kim
,
S. M.
Cho
, and
H.
Chae
,
J. Korean Phys. Soc.
73
,
45
(
2018
).
14.
F.
Werner
,
W.
Stals
,
R.
Görtzen
,
B.
Veith
,
R.
Brendel
, and
J.
Schmidt
,
Energy Procedia
8
,
301
(
2011
).
15.
P. S.
Maydannik
 et al.,
J. Vac. Sci. Technol. A
32
,
051603
(
2014
).
16.
H.
Choi
,
S.
Shin
,
H.
Jeon
,
Y.
Choi
,
J.
Kim
,
S.
Kim
,
S. C.
Chung
, and
K.
Oh
,
J. Vac. Sci. Technol. A
34
,
01a121
(
2016
).
17.
P. S.
Maydannik
,
A.
Plyushch
,
M.
Sillanpää
, and
D. C.
Cameron
,
J. Vac. Sci. Technol. A
33
,
01B117
(
2015
).
18.
P.
Poodt
,
D. C.
Cameron
,
E.
Dickey
,
S. M.
George
,
V.
Kuznetsov
,
G. N.
Parsons
,
F.
Roozeboom
,
G.
Sundaram
, and
A.
Vermeer
,
J. Vac. Sci. Technol. A
30
,
010802
(
2012
).
19.
D.
Muñoz-Rojas
,
T.
Maindron
,
A.
Esteve
,
F.
Piallat
,
J. C. S.
Kools
, and
J.-M.
Decams
,
Mater. Today Chem.
12
,
96
(
2019
).
20.
S.
Zhang
,
W.
Xue
, and
Z.
Yu
,
Thin Solid Films
580
,
101
(
2015
).
21.
A.
Behrendt
,
J.
Meyer
,
P.
van de Weijer
,
T.
Gahlmann
,
R.
Heiderhoff
, and
T.
Riedl
,
ACS Appl. Mater. Interfaces
8
,
4056
(
2016
).
22.
J. S.
Park
,
S. H.
Yong
,
Y. J.
Choi
, and
H.
Chae
,
AIP Adv.
8
,
085101
(
2018
).
23.
S. H.
Yong
,
S. J.
Kim
,
J. S.
Park
,
S. M.
Cho
,
H. J.
Ahn
, and
H.
Chae
,
J. Korean Phys. Soc.
73
,
40
(
2018
).
24.
S.-W.
Seo
,
E.
Jung
,
H.
Chae
,
S. J.
Seo
,
H. K.
Chung
, and
S. M.
Cho
,
Thin Solid Films
550
,
742
(
2014
).
25.
W.
Xiao
,
D. Y.
Hui
,
C.
Zheng
,
D.
Yu
,
Y. Y.
Qiang
,
C.
Ping
,
C. L.
Xiang
, and
Z.
Yi
,
Nanoscale Res. Lett.
10
,
130
(
2015
).
26.
S. H.
Lim
,
S.-W.
Seo
,
H.
Lee
,
H.
Chae
, and
S. M.
Cho
,
Korean J. Chem. Eng.
33
,
1971
(
2016
).
27.
D. A.
Spee
,
M. R.
Schipper
,
C. H. M.
van der Werf
,
J. K.
Rath
, and
R. E. I.
Schropp
,
Thin Solid Films
532
,
84
(
2013
).
28.
S.
Majee
,
M. F.
Cerqueira
,
D.
Tondelier
,
B.
Geffroy
,
Y.
Bonnassieux
,
P.
Alpuim
, and
J. E.
Bourée
,
Prog. Org. Coat.
80
,
27
(
2015
).
29.
S.-W.
Seo
,
H. K.
Chung
,
H.
Chae
,
S. J.
Seo
, and
S. M.
Cho
,
Nano
08
,
1350041
(
2013
).
30.
A.
Morlier
,
S.
Cros
,
J.-P.
Garandet
, and
N.
Alberola
,
Sol. Energy Mater. Sol. Cells
115
,
93
(
2013
).
31.
B. J.
Kim
,
D. H.
Kim
,
S. Y.
Kang
,
S. D.
Ahn
, and
S. G.
Im
,
J. Appl. Polym. Sci.
131
,
40974
(
2014
).
32.
S. H.
Yong
,
H. J.
Ahn
,
S. J.
Kim
,
J. S.
Park
,
S.
Kwon
,
S. M.
Cho
,
D.
Jung
, and
H.
Chae
,
Nano
13
,
1850082
(
2018
).
33.
B. J.
Kim
,
D.
Han
,
S.
Yoo
, and
S. G.
Im
,
Korean J. Chem. Eng.
34
,
892
(
2017
).
34.
M.
Gebhard
,
F.
Mitschker
,
C.
Hoppe
,
M.
Aghaee
,
D.
Rogalla
,
M.
Creatore
,
G.
Grundmeier
,
P.
Awakowicz
, and
A.
Devi
,
Plasma Process. Polym.
15
,
1700209
(
2018
).
35.
N. M.
Mackie
,
D. G.
Castner
, and
E. R.
Fisher
,
Langmuir
14
,
1227
(
1998
).
36.
C.
Seoul
and
W.-J.
Song
,
J. Mater. Sci. Mater. Electron.
12
,
51
(
2001
).
37.
A.
Fahmy
,
A.
Schonhals
, and
J.
Friedrich
,
J. Phys. Chem. B
117
,
10603
(
2013
).
38.
J.
Fahlteich
,
M.
Fahland
,
W.
Schönberger
, and
N.
Schiller
,
Thin Solid Films
517
,
3075
(
2009
).
39.
W.
Xiao
,
D.
Yu
,
S. F.
Bo
,
Y. Y.
Qiang
,
Y.
Dan
,
C.
Ping
,
D. Y.
Hui
, and
Z.
Yi
,
RSC Adv.
4
,
43850
(
2014
).
40.
A.
Larena
,
F.
Millán
,
G.
Pérez
, and
G.
Pinto
,
Appl. Surf. Sci.
187
,
339
(
2002
).
41.
S.-J.
Cho
,
I.-S.
Bae
,
Y. G.
Seol
,
N.-E.
Lee
,
Y. S.
Park
, and
J.-H.
Boo
,
Jpn. J. Appl. Phys.
50
,
01BC03
(
2011
).
42.
S. H.
Kim
,
C. H.
Kim
,
W. J.
Choi
,
T. G.
Lee
,
S. K.
Cho
,
Y. S.
Yang
,
J. H.
Lee
, and
S.-J.
Lee
,
Sci. Rep.
7
,
1451
(
2017
).
43.
R. G.
Turri
,
R. M.
Santos
,
E. C.
Rangel
,
N. C.
da Cruz
,
J. R. R.
Bortoleto
,
J. H.
Dias da Silva
,
C. A.
Antonio
, and
S. F.
Durrant
,
Appl. Surf. Sci.
280
,
474
(
2013
).
44.
W.
Kim
,
I.
Lee
,
D. Y.
Kim
,
Y.-Y.
Yu
,
H.-Y.
Jung
,
S.
Kwon
,
W. S.
Park
, and
T.-S.
Kim
,
Nanotechnology
28
,
194002
(
2017
).
45.
G.
Chen
,
Y.
Weng
,
F.
Sun
,
X.
Zhou
,
C.
Wu
,
Q.
Yan
,
T.
Guo
, and
Y.
Zhang
,
RSC Adv.
9
,
20884
(
2019
).
46.
J. H.
Jang
,
N.
Kim
,
X.
Li
,
T. K.
An
,
J.
Kim
, and
S. H.
Kim
,
Appl. Surf. Sci.
475
,
926
(
2019
).
You do not currently have access to this content.