Electrodeposited cobalt phosphate has been reported in the literature as a robust alternative to noble metal-based electrocatalysts for the O2 evolution reaction. In parallel, atomic layer deposition (ALD) has been acknowledged as a key technology for the preparation of thin films for energy applications. With the present work, the authors have addressed the preparation of cobalt phosphate thin films by a plasma-assisted ALD process. The process developed consists of cobaltocene (step A) and trimethyl phosphate (step C) exposures alternated by O2 plasma (steps B and D) in an ABCD fashion. The process shows a linear growth with a growth per cycle of 1.12 ± 0.05 Å at 300 °C and no nucleation delay. The ALD saturation behavior has been demonstrated for each dosing step, and the process shows minimal inhomogeneity on 100 mm diameter wafers in terms of film thickness (<1.0%) and refractive index (<0.5%). The chemical characterization of the layers deposited shows that the composition is close to the stoichiometric (Co3.1P2O8.3 for a deposition temperature of 200 °C) and the oxidation states of cobalt and phosphorus and agrees with those reported in the literature. The cobalt-to-phosphorous ratio has been found to correlate with the values of absorption coefficient (k) and refractive index (n) of the layers. Furthermore, the authors have gained insights into the surface reactions occurring during each ALD step by quadrupole mass spectrometry investigation. The results suggest that cobaltocene undergoes associative adsorption and the cyclopentadienyl ligands are removed during subsequent O2 plasma exposure. Moreover, the authors have indirectly identified cyclopentadienone as an intermediate of the oxidation and removal of cyclopentadienyl ligand. On the other hand, the trimethyl phosphate dosing is characterized by chemisorption via the elimination of methanol.

1.
R. L.
Doyle
,
I. J.
Godwin
,
M. P.
Brandon
, and
M. E. G.
Lyons
,
Phys. Chem. Chem. Phys.
15
,
13737
(
2013
).
2.
S.
Anantharaj
,
S. R.
Ede
,
K.
Sakthikumar
,
K.
Karthick
,
S.
Mishra
, and
S.
Kundu
,
ACS Catal.
6
,
8069
(
2016
).
3.
A.
Kudo
and
Y.
Miseki
,
Chem. Soc. Rev.
38
,
253
(
2009
).
4.
J.
Barber
,
Chem. Soc. Rev.
38
,
185
(
2009
).
5.
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
,
Acc. Chem. Res.
42
,
1890
(
2009
).
6.
H.
Kim
,
J.
Park
,
I.
Park
,
K.
Jin
,
S. E.
Jerng
,
S. H.
Kim
,
K. T.
Nam
, and
K.
Kang
,
Nat. Commun.
6
,
8253
(
2015
).
7.
M. W.
Kanan
and
D. G.
Nocera
,
Science
321
,
1072
(
2008
).
8.
Y.
Surendranath
,
M. W.
Kanan
, and
D. G.
Nocera
,
J. Am. Chem. Soc.
132
,
16501
(
2010
).
9.
K.
Klingan
,
F.
Ringleb
,
I.
Zaharieva
,
J.
Heidkamp
,
P.
Chernev
,
D.
Gonzalez-Flores
,
M.
Risch
,
A.
Fischer
, and
H.
Dau
,
ChemSusChem
7
,
1301
(
2014
).
10.
M.
Barroso
,
A. J.
Cowan
,
S. R.
Pendlebury
,
M.
Gratzel
,
D. R.
Klug
, and
J. R.
Durrant
,
J. Am. Chem. Soc.
133
,
14868
(
2011
).
11.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
12.
C.
Marichy
,
M.
Bechelany
, and
N.
Pinna
,
Adv. Mater.
24
,
1017
(
2012
).
13.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
14.
V.
Di Palma
,
G.
Zafeiropoulos
,
T.
Goldsweer
,
W. M. M.
Kessels
,
M. C. M.
van de Sanden
,
M.
Creatore
, and
M. N.
Tsampas
,
Electrochem. Commun.
98
,
73
(
2019
).
15.
K. B.
Gandrud
,
A.
Pettersen
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Mater. Chem. A
1
,
9054
(
2013
).
16.
T.
Dobbelaere
,
F.
Mattelaer
,
A. K.
Roy
,
P.
Vereecken
, and
C.
Detavernier
,
J. Mater. Chem. A
5
,
330
(
2017
).
17.
J.
Ludwig
and
T.
Nilges
,
J. Power Sources
382
,
101
(
2018
).
18.
J.
Ni
,
L.
Gao
, and
L.
Lu
,
J. Power Sources
221
,
35
(
2013
).
19.
I. C.
Jang
,
H. H.
Lim
,
S. B.
Lee
,
K.
Karthikeyan
,
V.
Aravindan
,
K. S.
Kang
,
W. S.
Yoon
,
W. I.
Cho
, and
Y. S.
Lee
,
J. Alloys Compd.
497
,
321
(
2010
).
20.
J.
Hämäläinen
,
J.
Holopainen
,
F.
Munnik
,
M.
Heikkilä
,
M.
Ritala
, and
M.
Leskelä
,
J. Phys. Chem. C
116
,
5920
(
2012
).
21.
T.
Dobbelaere
,
A. K.
Roy
,
P.
Vereecken
, and
C.
Detavernier
,
Chem. Mater.
26
,
6863
(
2014
).
22.
M.
Putkonen
,
T.
Sajavaara
,
P.
Rahkila
,
L.
Xu
,
S.
Cheng
,
L.
Niinistö
, and
H. J.
Whitlow
,
Thin Solid Films
517
,
5819
(
2009
).
23.
J.
Hamalainen
,
J.
Holopainen
,
F.
Munnik
,
T.
Hatanpaa
,
M.
Heikkila
,
M.
Ritala
, and
M.
Leskela
,
J. Electrochem. Soc.
159
,
A259
(
2012
).
24.
B.
Wang
,
J.
Liu
,
Q.
Sun
,
R.
Li
,
T. K.
Sham
, and
X.
Sun
,
Nanotechnology
25
,
504007
(
2014
).
25.
M. K.
Wiedmann
,
D. H. K.
Jackson
,
Y. J.
Pagan-Torres
,
E.
Cho
,
J. A.
Dumesic
, and
T. F.
Kuech
,
J. Vac. Sci. Technol. A
30
,
101A134
(
2012
).
26.
H. H.
Sønsteby
,
E.
Østreng
,
H.
Fjellvåg
, and
O.
Nilsen
,
Chem. Vap. Deposit.
20
,
269
(
2014
).
27.
T.
Dobbelaere
,
M.
Minjauw
,
T.
Ahmad
,
P. M.
Vereecken
, and
C.
Detavernier
,
J. Non-Cryst. Solids
444
,
43
(
2016
).
28.
J.
Ronge
,
T.
Dobbelaere
,
L.
Henderick
,
M. M.
Minjauw
,
S. P.
Sree
,
J.
Dendooven
,
J. A.
Martens
, and
C.
Detavernier
,
Nanoscale Adv.
1
,
4166
(
2019
).
29.
M. E.
Donders
,
H. C. M.
Knoops
,
M. C. M.
van de Sanden
,
W. M. M.
Kessels
, and
P. H. L.
Notten
,
J. Electrochem. Soc.
158
,
G92
(
2011
).
30.
H. C. M.
Knoops
,
A. J. M.
Mackus
,
M. E.
Donder
,
M. C. M.
van de Sanden
,
P. H. L.
Notten
, and
W. M. M.
Kessels
,
Electrochem. Solid-State Lett.
12
,
G34
(
2009
).
31.
S. B. S.
Heil
,
E.
Langereis
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
153
,
G956
(
2006
).
32.
A. V.
Shchukarev
and
D. V.
Korolkov
,
Open Chem.
2
,
347
(
2004
).
33.
Y.
Snoussi
,
A. M.
Khalil
,
B.
Strzemiecka
,
A.
Voelkel
, and
M. M.
Chehimi
, in
Clay-Polymer Nanocomposites
, edited by
K.
Jlassi
,
M. M.
Chehimi
,
S.
Thomas
(
Elsevier
, Amsterdam,
2017
), Chap. 11, pp.
363
411
.
34.
V.
Vandalon
and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
35
,
05C313
(
2017
).
35.
J. B.
Anderson
,
E.
Kostiner
,
M. C.
Miller
, and
J. R.
Rea
,
J. Solid State Chem.
14
,
372
(
1975
).
36.
L. E.
Black
,
A.
Cavalli
,
M. A.
Verheijen
,
J. E. M.
Haverkort
,
E. P. A. M.
Bakkers
, and
W. M. M.
Kessels
,
Nano Lett.
17
,
6287
(
2017
).
37.
E.
Amin-Chalhoub
,
T.
Duguet
,
D.
Samélor
,
O.
Debieu
,
E.
Ungureanu
, and
C.
Vahlas
,
Appl. Surf. Sci.
360
,
540
(
2016
).
38.
D.
Gallant
,
M.
Pézolet
, and
S.
Simard
,
J. Phys. Chem. B
110
,
6871
(
2006
).
39.
40.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. St. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
41.
Y. P.
Zhu
,
T. Z.
Ren
, and
Z. Y.
Yuan
,
Nanoscale
6
,
11395
(
2014
).
42.
G.
Ai
,
R.
Mo
,
H.
Li
, and
J.
Zhong
,
Nanoscale
7
,
6722
(
2015
).
43.
B.
Senthilkumar
,
Z.
Khan
,
S.
Park
,
I.
Seo
,
H.
Ko
, and
Y.
Kim
,
J. Power Sources
311
,
29
(
2016
).
44.
A. M.
Abdelghany
,
G.
El-Damrawi
,
Oraby
, and
M. A.
Madshal
,
J. Non-Cryst. Solids
499
,
153
(
2018
).
45.
M. A.
Ghauri
,
S. A.
Siddiqi
,
W. A.
Shah
,
M. G. B.
Ashiq
, and
M.
Iqbal
,
J. Non-Cryst. Solids
355
,
2466
(
2009
).
46.
M. F. J.
Vos
,
G.
van Straaten
,
W. M. M.
Erwin Kessels
, and
A. J. M.
Mackus
,
J. Phys. Chem. C
122
,
22519
(
2018
).
47.
R. K.
Robinson
and
R. P.
Lindstedt
,
Combust. Flame
158
,
666
(
2011
).
48.
A.
Ristori
,
P.
Dagaut
,
A.
El Bakali
,
G.
Pengloan
, and
M.
Cathonnet
,
Combust. Sci. Technol.
167
,
223
(
2001
).
49.
M. U.
Alzueta
,
P.
Glarborg
, and
K.
Dam-Johansen
,
Int. J. Chem. Kinet.
32
,
498
(
2000
).
50.
M. B.
Mitchell
,
V. N.
Sheinker
, and
E. A.
Mintz
,
J. Phys. Chem. B
101
,
11192
(
1997
).
51.
V.
Štengl
,
J.
Henych
,
T.
Grygar
, and
R.
Peréz
,
Mater. Res. Bull.
61
,
259
(
2015
).
52.
D. A.
Panayotov
and
J. R.
Morris
,
Langmuir
25
,
3652
(
2009
).
53.
D. Z.
Brunengraber
,
B. J.
McCabe
,
J.
Katanik
, and
S. F.
Previs
,
Anal. Biochem.
306
,
278
(
2002
).
54.
NIST Mass Spectrometry Data Center
,
William E.
Wallace
, “Mass spectra,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom and W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD), p. 20899, see (retrieved August 26, 2019).
55.
R.
Srikanth
,
R.
Srinivas
,
K.
Bhanuprakash
,
S.
Vivekananda
,
E. A.
Syrstad
, and
F.
Turec˘ek
,
J. Am. Soc. Mass Spectrom.
13
,
250
(
2002
).
56.
See supplementary material at https://doi.org/10.1116/1.5143896 for in situ spectroscopic ellipsometry, GI-XRD diffraction pattern, SEM images, and time-resolved QMS data.

Supplementary Material

You do not currently have access to this content.