Atomic layer deposition (ALD) is a versatile gas phase coating technique that allows coating of complex structured materials, as well as high-surface area materials such as nanoparticles. In this work, ALD is used to deposit a lutetium oxide layer on TiO2 nanoparticles (P25) in a fluidized bed reactor to produce particles for nuclear medical applications. Two precursors were tested: the commercially available Lu(TMHD)3 and the custom-made Lu(HMDS)3. Using Lu(TMHD)3, a lutetium loading up to 15 wt. % could be obtained, while using Lu(HMDS)3, only 0.16 wt. % Lu could be deposited due to decomposition of the precursor. Furthermore, it was observed that vibration-assisted fluidization allows for better fluidization of the nanoparticles and hence a higher degree of coating.

1.
P.
Darmawan
,
M. Y.
Chan
,
T.
Zhang
,
Y.
Setiawan
,
H. L.
Seng
,
T. K.
Chan
,
T.
Osipowicz
, and
P. S.
Lee
,
Appl. Phys. Lett.
93
,
062901
(
2008
).
2.
P.
Darmawan
,
P. S.
Lee
,
Y.
Setiawan
,
J.
Ma
, and
T.
Osipowicz
,
Appl. Phys. Lett.
91
,
092903
(
2007
).
3.
D.
Wu
,
C.
Li
,
Q.
Kong
,
Z.
Shi
,
D.
Zhang
,
L.
Wang
,
L.
Han
,
X.
Zhang
, and
Q.
Lin
,
J. Rare Earths
36
,
819
(
2018
).
4.
M. R. A.
Pillai
,
S.
Chakraborty
,
T.
Das
,
M.
Venkatesh
, and
N.
Ramamoorthy
,
Appl. Radiat. Isot.
59
,
109
(
2003
).
5.
D. J.
De Vries
and
H. T.
Wolterbeek
,
Tijdschr. Nucl. Geneesk
34
,
899
(
2012
).
7.
R.
Bhardwaj
,
A.
van der Meer
,
S. K.
Das
,
M.
de Bruin
,
J.
Gascon
,
H. T.
Wolterbeek
,
A. G.
Denkova
, and
P.
Serra-Crespo
,
Sci. Rep.
7
,
44242
(
2017
).
8.
European Medicine Agency
, “Lutathera, INN-lutetium(177Lu)oxodetreotide—Annex I,” EMA/524726/2017, EPAR (
2018
).
9.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
Appl. Phys. Rev.
113
,
021301
(
2013
).
10.
G.
Scarel
 et al.,
Appl. Phys. Lett.
85
,
630
(
2004
).
11.
H. L.
Lu
,
G.
Scarel
,
L.
Lamagna
,
M.
Fanciulli
,
S.-J.
Ding
, and
D. W.
Zhang
,
Appl. Phys. Lett.
93
,
152906
(
2008
).
12.
G.
Scarel
 et al.,
J. Electrochem. Soc.
153
,
F271
(
2006
).
13.
M.
Roeckerath
,
T.
Heeg
,
J. M. J.
Lopes
,
J.
Schubert
,
S.
Mantl
,
A.
Besmehn
,
P.
Myllymäki
, and
L.
Niinistö
,
Thin Solid Films
517
,
201
(
2008
).
14.
D.
Kunii
and
O.
Levenspiel
,
Fluidization Engineering
(
Elsevier
,
Stoneham
,
2013
).
15.
A. W.
Weimer
, in
Carbide, Nitride and Boride Materials Synthesis and Processing
, edited by
A. W.
Weimer
(
Springer Netherlands
,
Dordrecht
,
1997
), pp. 169–180.
16.
D. C.
Bradley
,
J. S.
Ghotra
, and
F. A.
Hart
,
J. Chem. Soc. Dalton Trans.
10
,
1021
(
1973
).
17.
D.
Valdesueiro
,
G.
Meesters
,
M.
Kreutzer
, and
J. R.
van Ommen
,
Materials
8
,
1249
(
2015
).
18.
Evonik Industries
, “Basic characteristics of AEROSIL fumed silica,” https://corporate.evonik.com.
19.
Cas Solutions
, see: www.scifinder.cas.org. Accessed 15 March 2016.
20.
D. M.
Price
,
Thermochim. Acta
367–368
,
253
(
2000
).
21.
S.
Barry
, paper presented at the
ALD 2016
,
Dublin
,
Ireland
,
2016
(unpublished).
22.
CRC Handbook of Chemistry and Physics
, 88th ed., edited by
J. R.
Rumble
(
CRC Press
,
Ohio
,
2000
).
23.
J. S.
Tauster
,
S. C.
Fung
, and
R. L.
Garten
,
J. Am. Chem. Soc.
100
,
170
(
1978
).
24.
S. W.
Park
,
J.
Woo Kim
,
H.
Jong Choi
, and
J.
Hyung Shim
,
J. Vac. Sci. Technol. A
32
,
01A115
(
2014
).
25.
J.
Päiväsaari
,
M.
Putkonen
, and
L.
Niinistö
,
Thin Solid Films
472
,
275
(
2005
).
26.
T.
Boekhoudt
, “
Technische Universiteit Delft
,” Master thesis (
Technische Universiteit Delft
,
2016)
.
27.
R. L.
Puurunen
,
Chem. Vapor Depos.
9
,
249
(
2003
).
28.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
29.
R. L.
Puurunen
and
W.
Vandervorst
,
J. Appl. Phys.
96
,
7686
(
2004
).
30.
M.
Guarino
,
A.
Costa
, and
M.
Porro
,
Bioresour. Technol.
99
,
2650
(
2008
).
31.
See supplementary material at https://doi.org/10.1116/1.5134446 for additional calculations and results.

Supplementary Material

You do not currently have access to this content.