Nitrogen incorporated molybdenum oxide (MoOx:N) thin films are obtained by stacking of atomic layer deposited grown MoOx and MoNx in a nanolaminate architecture without any postdeposition processing. Evolution of stoichiometrically dependent electron conductivity is obtained that is efficiently controlled by varying the ratio of the number of layers (MoOx to MoNx) in the nanolaminate structure. The carrier type, the free carrier concentration, and the mobility of the as-grown materials are studied by temperature-dependent Hall-effect measurement. The authors hypothesize that the addition of N-atom creates oxygen vacancies in the films that in turn act as a shallow donor level that results in improved conductivity in the ternary material. As-grown materials, both in the form of planar architecture and coaxially grown on multiwalled carbon nanotubes are investigated as a prospective anode material in the Li-ion battery. The comparison reveals a substantially improved performance of N-incorporated samples than that of the pristine materials. The highest discharge capacity of 1287 mA h g−1 was achieved in the first cycle at a current rate of 0.1 A g−1, and a stable capacity of 974 and 610 mA h g−1 is achieved when discharged at 0.1 and 2 A g−1, respectively, from the core-shell structures.

1.
R. J.
Xie
and
H. T.
Hintzen
,
J. Am. Ceram. Soc.
96
,
665
(
2013
).
2.
D. E.
Bugaris
and
J. A.
Ibers
,
Dalton Trans.
39
,
5942
(
2010
).
3.
M.
Lerch
 et al,
Prog. Solid State Chem.
37
,
81
(
2009
).
4.
A.
Fuertes
,
Mater. Horizons
2
,
453
(
2015
).
5.
S.
Livraghi
,
N.
Barbero
,
S.
Agnoli
,
C.
Barolo
,
G.
Granozzi
,
F.
Sauvage
, and
E.
Giamello
,
Phys. Chem. Chem. Phys.
18
,
22617
(
2016
).
6.
J.
Cabana
,
G.
Rousse
,
A.
Fuertes
, and
M. R.
Palacìn
,
J. Mater. Chem.
13
,
2402
(
2003
).
7.
Q.
Zhao
,
L.
Fu
,
D.
Jiang
,
J.
Ouyang
,
Y.
Hu
,
H.
Yang
, and
Y.
Xi
,
Commun. Chem.
2
,
11
(
2019
).
8.
D.
Zhou
,
H.
Wu
,
Z.
Wei
, and
B.-H.
Han
,
Phys. Chem. Chem. Phys.
15
,
16898
(
2013
).
9.
W.
Ji
,
R.
Shen
,
R.
Yang
,
G.
Yu
,
X.
Guo
,
L.
Peng
, and
W.
Ding
,
J. Mater. Chem. A
2
,
699
(
2014
).
10.
A.
Gomathi
,
S.
Reshma
, and
C. N. R.
Rao
,
J. Solid State Chem.
182
,
72
(
2009
).
11.
F.
Stadler
,
R.
Kraut
,
O.
Oeckler
,
S.
Schmid
, and
W.
Schnick
,
ZAAC
631
,
1773
(
2005
).
12.
N.
Arumugam
,
A.
Hönnerscheid
, and
M.
Jansen
,
ZAAC
629
,
939
(
2003
).
13.
H. O.
Pierson
,
Handbook of Chemical Vapor Deposition: Principles, Technology and Applications
(
William Andrew
,
New York
,
1999
).
14.
A.
Rachel
,
S. G.
Ebbinghaus
,
M.
Güngerich
,
P. J.
Klar
,
J.
Hanss
,
A.
Weidenkaff
, and
A.
Reller
,
Thermochim. Acta
438
,
134
(
2005
).
15.
T.
Motohashi
,
Y.
Hamade
,
Y.
Masubuchi
,
T.
Takeda
,
K.
ichiro Murai
,
A.
Yoshiasa
, and
S.
Kikkawa
,
Mater. Res. Bull.
44
,
1899
(
2009
).
16.
S. G.
Ebbinghaus
,
H. P.
Abicht
,
R.
Dronskowski
,
T.
Muller
,
A.
Reller
, and
A.
Weidenkaff
,
Prog. Solid State Chem.
37
,
173
(
2009
).
17.
A.
Fuertes
,
Dalt. Trans.
39
,
5942
(
2010
).
18.
Y.
Il Kim
,
W.
Si
,
P. M.
Woodward
,
E.
Sutter
,
S.
Park
, and
T.
Vogt
,
Chem. Mater.
19
,
618
(
2007
).
19.
C.
Le Paven
,
L.
Le Gendre
,
R.
Benzerga
,
F.
Cheviré
,
F.
Tessier
,
S.
Jacq
,
S.
Traoré-Mantion
, and
A.
Sharaiha
,
J. Cryst. Growth
413
,
5
(
2015
).
20.
C.
Le Paven-Thivet
,
L.
Le Gendre
,
J.
Le Castrec
,
F.
Cheviré
,
F.
Tessier
, and
J.
Pinel
,
Prog. Solid State Chem.
35
,
299
(
2007
).
21.
D. V.
Tsu
,
G.
Lucovsky
,
M. J.
Mantini
, and
S. S.
Chao
,
Film
5
,
1998
(
2002
).
22.
K.
Wörhoff
,
A.
Driessen
,
P. V.
Lambeck
,
L. T. H.
Hilderink
,
P. W. C.
Linders
, and
T. J. A.
Popma
,
Sens. Actuators A
74
,
9
(
1999
).
23.
X.
Song
,
D.
Gopireddy
, and
C. G.
Takoudis
,
Thin Solid Films
516
,
6330
(
2008
).
24.
D. M.
Mattox
,
Physical Vapor Deposition (PVD) Processes
, 1st ed. (
William Andrew Publishing
,
New York
,
1998
).
25.
K.
Seshan
and
D.
Schepis
,
Handbook of Thin Film Deposition
(
William Andrew Publishing
,
New York
,
2018
).
26.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
27.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
28.
C. S.
Hwang
,
Atomic Layer Deposition of Nanostructured Materials
(
Wiley-VCH
,
Weinheim
,
2012
), Chap. 8, pp.
161
192
.
29.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
30.
L.
Wen
,
M.
Zhou
,
C.
Wang
,
Y.
Mi
, and
Y.
Lei
,
Adv. Energy Mater.
6
,
1600468
(
2016
).
31.
C.
Guan
and
J.
Wang
,
Adv. Sci.
3
,
1500405
(
2016
).
32.
B.
Ahmed
,
C.
Xia
, and
H. N.
Alshareef
,
Nano Today
11
,
250
(
2016
).
33.
B.
Yan
,
X.
Li
,
Z.
Bai
,
X.
Song
,
D.
Xiong
,
M.
Zhao
,
D.
Li
, and
S.
Lu
,
J. Power Sources
338
,
34
(
2017
).
34.
K. L.
Pickrahn
,
A.
Garg
, and
S. F.
Bent
,
ACS Catal.
5
,
1609
(
2015
).
35.
A. J. M.
Mackus
,
J. R.
Schneider
,
C.
Macisaac
,
J. G.
Baker
, and
S. F.
Bent
,
Chem. Mater.
31
,
1142
(
2019
).
36.
D. M.
Stewart
,
A. J.
Pearse
,
N. S.
Kim
,
E. J.
Fuller
,
A. A.
Talin
,
K.
Gregorczyk
,
S. B.
Lee
, and
G. W.
Rubloff
,
Chem. Mater.
30
,
2526
(
2018
).
37.
S.
Sinha
,
H. V.
Ramasamy
,
D. K.
Nandi
,
P. N.
Didwal
,
J. Y.
Cho
,
C. J.
Park
,
Y. S.
Lee
,
S. H.
Kim
, and
J.
Heo
,
J. Mater. Chem. A
6
,
16515
(
2018
).
38.
S.
Sinha
,
P. N.
Didwal
,
D. K.
Nandi
,
R.
Verma
,
J. Y.
Cho
,
S. H.
Kim
,
C. J.
Park
, and
J.
Heo
,
Small
15
,
1900595
(
2019
).
39.
J. S.
Na
,
Q.
Peng
,
G.
Scarel
, and
G. N.
Parsons
,
Chem. Mater.
21
,
5585
(
2009
).
40.
N.
Mahuli
,
D.
Saha
,
S. K.
Maurya
,
S.
Sinha
,
N.
Patra
,
B.
Kavaipatti
, and
S. K.
Sarkar
,
J. Phys. Chem. C
122
,
16356
(
2018
).
41.
M.
Diskus
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Mater. Chem.
21
,
705
(
2011
).
42.
A.
Bertuch
,
G.
Sundaram
,
M.
Saly
,
D.
Moser
, and
R.
Kanjolia
,
J. Vac. Sci. Technol. A
32
,
01A119
(
2014
).
43.
S.
Kühn
,
P.
Schmidt-Zhang
,
A. H. P.
Hahn
,
M.
Huber
,
M.
Lerch
, and
T.
Ressler
,
Chem. Cent. J.
5
,
42
(
2011
).
44.
A.
De Jamblinne De Meux
,
G.
Pourtois
,
J.
Genoe
, and
P.
Heremans
,
Phys. Rev. B
97
,
045208
(
2018
).
45.
F.
Hossein-Babaei
,
S.
Masoumi
, and
A.
Noori
,
Meas. Sci. Technol.
28
,
115002
(
2017
).
46.
T. V.
Ramakrishnan
and
P. A.
Lee
,
Rev. Mod. Phys.
57
,
287
(
1985
).
47.
U.
Givan
and
Z.
Ovadyahu
,
Phys. Rev. B
86
,
165101
(
2012
).
48.
D. J.
Dunstan
,
J. Phys. C Solid State Phys.
15
,
L419
(
1982
).
49.
C.
Bosio
and
W.
Czaja
,
Philos. Mag. B
63
,
7
(
1991
).
50.
R. C.
Rai
,
J. Appl. Phys.
113
,
153508
(
2013
).
51.
H.
Bragança
,
M. C. O.
Aguiar
,
J.
Vučičević
,
D.
Tanasković
, and
V.
Dobrosavljević
,
Phys. Rev. B
92
,
125143
(
2015
).
52.
Y. L.
Huang
,
S. P.
Chiu
,
Z. X.
Zhu
,
Z. Q.
Li
, and
J. J.
Lin
,
J. Appl. Phys.
107
,
063715
(
2010
).
53.
L.
Essaleh
,
S. M.
Wasim
,
G.
Marín
,
C.
Rincón
,
S.
Amhil
, and
J.
Galibert
,
J. Appl. Phys.
122
,
015702
(
2017
).
54.
J. J.
Yang
,
N. P.
Kobayashi
,
J. P.
Strachan
,
M. X.
Zhang
,
D. A. A.
Ohlberg
,
M. D.
Pickett
,
Z.
Li
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Chem. Mater.
23
,
123
(
2011
).
55.
P.-J.
Lu
,
M.
Lei
, and
J.
Liu
,
CrystEngComm
16
,
6745
(
2014
).
56.
A.
Dhara
,
S. K.
Sarkar
, and
S.
Mitra
,
Adv. Mater. Interfaces
4
,
1
(
2017
).
57.
C.-L.
Liu
,
Y.
Wang
,
C.
Zhang
,
X.-S.
Li
, and
W.-S.
Dong
,
Mater. Chem. Phys.
143
,
1111
(
2014
).
58.
B.
Ahmed
,
M.
Shahid
,
D. H.
Nagaraju
,
D. H.
Anjum
,
M. N.
Hedhili
, and
H. N.
Alshareef
,
ACS Appl. Mater. Interfaces
7
,
13154
(
2015
).
59.
F.
Ma
,
A.
Yuan
,
J.
Xu
, and
P.
Hu
,
ACS Appl. Mater. Interfaces
7
,
15531
(
2015
).
60.
A.
Martinez-Garcia
,
A. K.
Thapa
,
R.
Dharmadasa
,
T. Q.
Nguyen
,
J.
Jasinski
,
T. L.
Druffel
, and
M. K.
Sunkara
,
Sci. Rep.
5
,
10530
(
2015
).
61.
X. J.
Wang
,
R.
Nesper
,
C.
Villevieille
, and
P.
Novák
,
Adv. Energy Mater.
3
,
606
(
2013
).
62.
D. K.
Nandi
,
U. K.
Sen
,
D.
Choudhury
,
S.
Mitra
, and
S. K.
Sarkar
,
ACS Appl. Mater. Interfaces
6
,
6606
(
2014
).
63.
L. P.
Wang
 et al,
Adv. Mater.
29
,
1603286
(
2017
).
64.
J. M.
Tarascon
and
M.
Armand
,
Nature
414
,
359
(
2001
).
65.
Y.
Wang
and
G.
Cao
,
Adv. Mater.
20
,
2251
(
2008
).
66.
Y. J.
Hong
,
M. Y.
Son
, and
Y. C.
Kang
,
Adv. Mater.
25
,
2279
(
2013
).
67.
H.
Wang
and
A. L.
Rogach
,
Chem. Mater.
26
,
123
(
2014
).
68.
See supplementary material at https://doi.org/10.1116/1.5130606 for in situ QCM studies of MoOx and MoNx and Raman, SIMS, Seebeck coefficient, and optical studies of different as-deposited materials.

Supplementary Material

You do not currently have access to this content.