Gallium oxide (Ga2O3) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) applying a capacitively coupled plasma source where trimethylgallium (TMGa) as the gallium precursor and oxygen (O2) plasma were used in a substrate temperature (Ts) in range of 80–200 °C. TMGa exhibits high vapor pressure and therefore facilitates deposition at lower substrate temperatures. The Ga2O3 films were characterized by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), and capacitance-voltage (C-V) measurements. The SE data show linear thickness evolution with a growth rate of ∼0.66 Å per cycle and inhomogeneity of ≤2% for all samples. The refractive index of the Ga2O3 thin films is 1.86 ± 0.01 (at 632.8 nm) and independent of temperature, whereas the bandgap slightly decreases from 4.68 eV at Ts of 80 °C to 4.57 eV at 200 °C. XPS analysis revealed ideal stoichiometric gallium to oxygen ratios of 2:3 for the Ga2O3 layers with the lowest carbon contribution of ∼10% for the sample prepared at 150 °C. The permittivity of the layers is 9.7 ± 0.2 (at 10 kHz). In addition, fixed and mobile oxide charge densities of 2–4 × 1012 and 1–2 × 1012 cm−2, respectively, were observed in the C-V characteristics. Moreover, the Ga2O3 films show breakdown fields in the range of 2.2–2.7 MV/cm. Excellent optical and electrical material properties are maintained even at low substrate temperatures as low as 80 °C. Hence, the TMGa/O2 PEALD process is suitable for electronic and optoelectronic applications where low-temperature growth is required.

1.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Status Solidi B
252
,
828
(
2015
).
2.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
77
,
4166
(
2000
).
3.
Y.
Yao
,
R. F.
Davis
, and
L. M.
Porter
,
J. Electron. Mater.
46
,
2053
(
2017
).
4.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
5.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
6.
F. K.
Shan
,
G. X.
Liu
,
W. J.
Lee
,
G. H.
Lee
,
I. S.
Kim
, and
B. C.
Shin
,
J. Appl. Phys.
98
,
023504
(
2005
).
7.
H.
Hayashi
,
R.
Huang
,
H.
Ikeno
,
F.
Oba
,
S.
Yoshioka
,
I.
Tanaka
, and
S.
Sonoda
,
Appl. Phys. Lett.
89
,
181903
(
2006
).
8.
G. W.
Paterson
,
P.
Longo
,
J. A.
Wilson
,
A. J.
Craven
,
A. R.
Long
,
I. G.
Thayne
,
M.
Passlack
, and
R.
Droopad
,
J. Appl. Phys.
104
,
103719
(
2008
).
9.
H.
Lee
,
K.
Kim
,
J.-J.
Woo
,
D.-J.
Jun
,
Y.
Park
,
Y.
Kim
,
H. W.
Lee
,
Y. J.
Cho
, and
H. M.
Cho
,
Chem. Vapor Deposition
17
,
191
(
2011
).
10.
D.-W.
Choi
,
K.-B.
Chung
, and
J.-S.
Park
,
Thin Solid Films
546
,
31
(
2013
).
11.
S.
Stepanov
,
V.
Nikolaev
,
V.
Bougrov
, and
A.
Romanov
,
Rev. Adv. Mater. Sci
44
,
63
(
2016
), available at http://www.ipme.ru/e-journals/RAMS/no_14416/06_14416_stepanov.pdf.
12.
M.
Fleischer
and
H.
Meixner
,
J. Appl. Phys.
74
,
300
(
1993
).
13.
M.
Holland
,
C. R.
Stanley
,
W.
Reid
,
R. J. W.
Hill
,
D. A. J.
Moran
,
I.
Thayne
,
G. W.
Paterson
, and
A. R.
Long
,
J. Vac. Sci. Technol. B
25
,
1706
(
2007
).
14.
M.
Fleischer
,
J.
Giber
, and
H.
Meixner
,
Appl. Phys. A
54
,
560
(
1992
).
15.
M.
Nieminen
,
L.
Niinistö
, and
E.
Rauhala
,
J. Mater. Chem.
6
,
27
(
1996
).
16.
Dezelah
,
J.
Niinistö
,
K.
Arstila
,
L.
Niinistö
, and
C. H.
Winter
,
Chem. Mater.
18
,
471
(
2006
).
17.
D. J.
Comstock
and
J. W.
Elam
,
Chem. Mater.
24
,
4011
(
2012
).
18.
Y. S.
Lee
,
D.
Chua
,
R. E.
Brandt
,
S. C.
Siah
,
J. V.
Li
,
J. P.
Mailoa
,
S. W.
Lee
,
R. G.
Gordon
, and
T.
Buonassisi
,
J. Adv. Mater.
26
,
4704
(
2014
).
19.
T.
Faraz
,
K.
Arts
,
S.
Karwal
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
Plasma Sources Sci. Technol.
28
,
024002
(
2019
).
20.
I.
Donmez
,
C.
Ozgit-Akgun
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
31
,
01A110
(
2012
).
21.
H.-Y.
Shih
,
F.-C.
Chu
,
A.
Das
,
C.-Y.
Lee
,
M.-J.
Chen
, and
R.-M.
Lin
,
Nanoscale Res. Lett.
11
,
235
(
2016
).
22.
R. K.
Ramachandran
,
J.
Dendooven
,
J.
Botterman
,
S.
Pulinthanathu Sree
,
D.
Poelman
,
J. A.
Martens
,
H.
Poelman
, and
C.
Detavernier
,
J. Mater. Chem. A
2
,
19232
(
2014
).
23.
G. A.
Battiston
,
R.
Gerbasi
,
M.
Porchia
,
R.
Bertoncello
, and
F.
Caccavale
,
Thin Solid Films
279
,
115
(
1996
).
24.
R.
Binions
,
C. J.
Carmalt
,
I. P.
Parkin
,
K. F. E.
Pratt
, and
G. A.
Shaw
,
Chem. Mater.
16
,
2489
(
2004
).
25.
M. J.
Ludowise
,
J. Appl. Phys.
58
,
R31
(
1985
).
26.
H.-P.
Ma
 et al,
J. Mater. Chem. C
6
,
12518
(
2018
).
27.
H.
Altuntas
,
I.
Donmez
,
C.
Ozgit-Akgun
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
32
,
041504
(
2014
).
28.
K.
Henkel
,
H.
Gargouri
,
B.
Gruska
,
M.
Arens
,
M.
Tallarida
, and
D.
Schmeißer
,
J. Vac. Sci. Technol. A
32
,
01A107
(
2014
).
29.
J.
Haeberle
,
K.
Henkel
,
H.
Gargouri
,
F.
Naumann
,
B.
Gruska
,
M.
Arens
,
M.
Tallarida
, and
D.
Schmeißer
,
Beilstein J. Nanotechnol.
4
,
732
(
2013
).
30.
P.
Ruffieux
,
P.
Schwaller
,
O.
Gröning
,
L.
Schlapbach
,
P.
Gröning
,
Q. C.
Herd
,
D.
Funnemann
, and
J.
Westermann
,
Rev. Sci. Instrum.
71
,
3634
(
2000
).
31.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data
32
,
1
(
1985
).
32.
K.
Henkel
, “
Electrical investigations on praseodymium oxide/aluminum oxynitride containing metal-insulator-semiconductor stacks and on metal-ferroelectric-insulator-semiconductor structures consisting of poly[vinylidene fluoride trifluoroethylene]
,”
Ph.D. thesis
(
Brandenburg University of Technology
,
2009
).
33.
R. L.
Puurunen
,
Chem. Vapor Deposition
9
,
249
(
2003
).
34.
B.
Abendroth
,
T.
Moebus
,
S.
Rentrop
,
R.
Strohmeyer
,
M.
Vinnichenko
,
T.
Weling
,
H.
Stöcker
, and
D. C.
Meyer
,
Thin Solid Films
545
,
176
(
2013
).
35.
P.
Malet
and
G.
Munuera
,
J. Chem. Soc.
85
,
4157
(
1989
).
36.
E.
Kobayashi
,
Mathieu
Boccard
,
Quentin
Jeangros
,
Max
Döbeli
,
Daniel
Franta
,
Stefaan
De Wolf
,
Monica
Morales-Masis
, and
Christophe
Ballif
,
J. Vac. Sci. Technol. A
36
,
021518
(
2018
).
37.
O. M.
Bordun
,
I. Yo.
Kukharskyy
,
B. O.
Bordun
, and
V. B.
Lushchanets
,
J. Appl. Spectrosc.
81
,
771
(
2014
).
38.
C. V.
Ramana
,
E. J.
Rubio
,
C. D.
Barraza
,
A.
Miranda Gallardo
,
S.
McPeak
,
S.
Kotru
, and
J. T.
Grant
,
J. Appl. Phys.
115
,
043508
(
2014
).
39.
K.
Taniguchi
,
M.
Tanaka
,
C.
Hamaguchi
, and
K.
Imai
,
J. Appl. Phys.
67
,
2195
(
1990
).
40.
W.
Rzodkiewicz
and
A.
Panas
,
Acta Phys. Pol. A
116
,
S92
(
2009
).
41.
M.
Valet
and
D. M.
Hoffman
,
Chem. Mater.
13
,
2135
(
2001
).
42.
D.-H.
Kim
,
S.-H.
Yoo
,
K.-S.
An
,
H.
Yoo
, and
Y.
Kim
,
Bull. Korean Chem. Soc.
23
,
225
(
2002
).
43.
N.
Makeswaran
,
A. K.
Battu
,
R.
Swadipta
,
F. S.
Manciu
, and
C. V.
Ramana
,
ECS J. Solid State Sci. Technol.
8
,
Q3249
(
2019
).
44.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
(
Perkin-Elmer
,
Waltham
,
MA
,
1992
).
45.
E. J.
Rubio
,
T. E.
Mates
,
S.
Manandhar
,
M.
Nandasiri
,
V.
Shutthanandan
, and
C. V.
Ramana
,
J. Phys. Chem. C
120
,
26720
(
2016
).
46.
S.
Ghose
,
S.
Rahman
,
L.
Hong
,
J. S.
Rojas-Ramirez
,
H.
Jin
,
K.
Park
,
R.
Klie
, and
R.
Droopad
,
J. Appl. Phys.
122
,
095302
(
2017
).
47.
J.-C.
Dupin
,
D.
Gonbeau
,
P.
Vinatier
, and
A.
Levasseur
,
Phys. Chem.
2
,
1319
(
2000
).
48.
H.
Perron
,
J.
Vandenborre
,
C.
Domain
,
R.
Drot
,
J.
Roques
,
E.
Simoni
,
J. J.
Ehrhardt
, and
H.
Catalette
,
Surf. Sci.
601
,
518
(
2007
).
49.
C.
Das
,
K.
Henkel
,
M.
Tallarida
,
D.
Schmeißer
,
H.
Gargouri
,
I.
Kärkkänen
,
J.
Schneidewind
,
B.
Gruska
, and
M.
Arens
,
J. Vac. Sci. Technol. A
33
,
01A144
(
2015
).
50.
A.
Fiedler
,
R.
Schewski
,
Z.
Galazka
, and
K.
Irmscher
,
ECS J. Solid State Sci. Technol.
8
,
Q3083
(
2019
).
51.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
2005
).
52.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
,
1982
).
53.
G. X.
Liu
,
F. K.
Shan
,
J. J.
Park
,
W. J.
Lee
,
G. H.
Lee
,
I. S.
Kim
,
B. C.
Shin
, and
S. G.
Yoon
,
J. Electroceram.
17
,
145
(
2006
).
54.
D.
Schmeißer
and
K.
Henkel
,
J. Appl. Phys.
123
,
161596
(
2018
).
55.
K.
Henkel
,
M.
Kot
, and
D.
Schmeißer
,
J. Vac. Sci. Technol. A
35
,
01B125
(
2017
).
56.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 79th ed. (
CRC
,
Boca Raton
,
FL
,
1998
).
57.
S.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
).
58.
M.
Kot
 et al,
J. Vac. Sci. Technol. A
37
,
020913
(
2019
).
59.
M.
Passlack
,
N. E. J.
Hunt
,
E. F.
Schubert
,
G. J.
Zydzik
,
M.
Hong
,
J. P.
Mannaerts
,
R. L.
Opila
, and
R. J.
Fischer
,
Appl. Phys. Lett.
64
,
2715
(
1994
).
60.
C.-T.
Lee
,
H.-W.
Chen
, and
H.-Y.
Lee
,
Appl. Phys. Lett.
82
,
4304
(
2003
).
61.
See supplementary material at https://doi.org/10.1116/1.5129803 for ellipsometric parameter Delta as function of process time within the first ALD cycles, refractive index and extinction coefficient in dependence of the wavelength, repeated C-V loops at the same measurement conditions, and GPC and inhomogeneity achieved for the ALD of ultra-thin (10 nm) films.

Supplementary Material

You do not currently have access to this content.