Gallium oxide (Ga2O3) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) applying a capacitively coupled plasma source where trimethylgallium (TMGa) as the gallium precursor and oxygen (O2) plasma were used in a substrate temperature (Ts) in range of 80–200 °C. TMGa exhibits high vapor pressure and therefore facilitates deposition at lower substrate temperatures. The Ga2O3 films were characterized by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), and capacitance-voltage (C-V) measurements. The SE data show linear thickness evolution with a growth rate of ∼0.66 Å per cycle and inhomogeneity of ≤2% for all samples. The refractive index of the Ga2O3 thin films is 1.86 ± 0.01 (at 632.8 nm) and independent of temperature, whereas the bandgap slightly decreases from 4.68 eV at Ts of 80 °C to 4.57 eV at 200 °C. XPS analysis revealed ideal stoichiometric gallium to oxygen ratios of 2:3 for the Ga2O3 layers with the lowest carbon contribution of ∼10% for the sample prepared at 150 °C. The permittivity of the layers is 9.7 ± 0.2 (at 10 kHz). In addition, fixed and mobile oxide charge densities of 2–4 × 1012 and 1–2 × 1012 cm−2, respectively, were observed in the C-V characteristics. Moreover, the Ga2O3 films show breakdown fields in the range of 2.2–2.7 MV/cm. Excellent optical and electrical material properties are maintained even at low substrate temperatures as low as 80 °C. Hence, the TMGa/O2 PEALD process is suitable for electronic and optoelectronic applications where low-temperature growth is required.

Supplementary Material

You do not currently have access to this content.