In the last few years, hafnium oxide (HfO2), zirconium oxide (ZrO2), and their intermixed system (HfxZr1 − xO2) have aroused more and more interest due to their outstanding properties in the frame of semiconductor applications. Different mixtures of these two sister materials, i.e., different Hf:Zr ratios in HfxZr1 − xO2 layers, as well as different crystal arrangements come with a wide set of structural and electrical properties, making this system extremely versatile. Starting from an amorphous layer, the different crystalline phases are easier to be targeted through subsequent thermal treatment. A correct understanding of the deposition process could help in obtaining films showing the addressed material properties for the selected application. In this paper, a comparison of Hf- and Zr-atomic layer deposition precursors is conducted, with the goal of depositing an almost amorphous HfxZr1 − xO2 layer. Material composition is tuned experimentally in order to address the properties that are relevant for the semiconductor industry. The observed trends are examined, and guidelines for applications are suggested.

1.
H.
Harris
,
K.
Choi
,
N.
Mehta
,
A.
Chandolu
,
N.
Biswas
,
G.
Kipshidze
,
S.
Nikishin
,
S.
Gangopadhyay
, and
H.
Temkin
,
Appl. Phys. Lett.
81
,
1065
(
2002
).
2.
Y.-S.
Lin
,
R.
Puthenkovilakam
, and
J. P.
Chang
,
Appl. Phys. Lett.
81
,
2041
(
2002
).
3.
M.
Bohr
,
R.
Chau
,
T.
Ghani
, and
K.
Mistry
,
IEEE Spectrum
44
,
29
(
2007
).
4.
A.
Berthelot
,
C.
Caillat
,
V.
Huard
,
S.
Barnola
,
B.
Boeck
,
H.
Del-Puppo
,
N.
Emonet
, and
F.
Lalanne
,
2006 European Solid-State Device Research Conference,
Montreux, Switzerland, 2006 (
IEEE
,
Montreux
,
2006
), pp.
343
346
.
5.
B.
Govoreanu
and
G. S.
Kar
,
International Electron Devices Meeting 2011,
Washington, DC, 2011 (
IEEE
,
Washington, DC
,
2011
).
6.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
7.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
8.
M.
Ritala
and
M.
Leskelä
,
Handbook of Thin Film Materials
, edited by
H. S.
Nalwa
(
Academic
,
San Diego
,
2002
).
9.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
10.
M. H.
Park
 et al,
Nanoscale
9
,
9973
(
2017
).
11.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
075105
(
2002
).
12.
X.
Zhao
and
D.
Vanderbilt
,
Phys. Rev. B
65
,
233106
(
2002
).
13.
K.
McKenna
,
A.
Shluger
,
V.
Iglesias
,
M.
Porti
,
M.
Nafría
,
M.
Lanza
, and
G.
Bersuker
,
Microelectron. Eng.
88
,
1272
(
2011
).
14.
J.
Aarik
and
A.
Aidla
,
Thin Solid Films
340
(
1–2
),
110
(
1999
).
15.
J.
Aarik
,
A.
Aidla
,
A.
Kikas
,
T.
Käämbre
,
R.
Rammula
,
P.
Ritslaid
,
T.
Uustare
, and
V.
Sammelselg
,
Appl. Surf. Sci.
230
,
292
(
2004
).
16.
K.
Kukli
,
M.
Ritala
,
M.
Leskelä
,
T.
Sajavaara
,
J.
Keinonen
,
A. C.
Jones
, and
J. L.
Roberts
,
Chem. Mater.
15
,
1722
(
2003
).
17.
K.
Kukli
,
T.
Pilvi
,
M.
Ritala
,
T.
Sajavaara
,
J.
Lu
, and
M.
Leskelä
,
Thin Solid Films
491
,
328
(
2005
).
18.
J.
Niinistö
, “
Atomic layer deposition of high-k dielectrics from novel cyclopentadienyl-type precursors
,”
Ph.D. thesis
(
Helsinki University of Technology
,
2006
), p.
72
.
19.
S.
Seppälä
,
M.
Vehkamäki
,
K.
Mizohata
,
W.
Noh
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
,
J. Vac. Sci. Technol. A
37
,
020912
(
2019
).
20.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
,
T.
Uustare
, and
V.
Sammelselg
,
Thin Solid Films
408
,
97
(
2002
).
21.
R.
Matero
,
M.
Ritala
,
M.
Leskelä
,
T.
Sajavaara
,
A. C.
Jones
, and
J. L.
Roberts
,
Chem. Mater.
16
,
5630
(
2004
).
22.
J.
Liu
,
J.
Li
,
J.
Wu
, and
J.
Sun
,
Nanoscale Res. Lett.
14
,
154
(
2019
).
23.
H.
Machida
,
T.
Kada
,
M.
Ishikawa
,
A.
Ogura
, and
Y.
Ohshita
,
Jpn. J. Appl. Phys.
43
,
966
(
2004
).
24.
T.
Suntola
,
Appl. Surf. Sci.
100–101
,
391
(
1996
).
25.
D. M.
Hausmann
,
E.
Kim
,
J.
Becker
, and
R. G.
Gordon
,
Chem. Mater.
14
,
4350
(
2002
).
26.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
27.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
,
V.
Sammelselg
, and
T.
Uustare
,
J. Cryst. Growth
220
,
105
(
2000
).
28.
J.
Sundqvist
,
A.
Hårsta
,
J.
Aarik
,
K.
Kukli
, and
A.
Aidla
,
Thin Solid Films
427
,
147
(
2003
).
29.
K.
Kukli
,
M.
Ritala
,
J.
Lu
, and
A.
Ha
,
J. Electrochem. Soc.
151
,
F189
(
2004
).
30.
K.
Kukli
,
M.
Ritala
,
T.
Sajavaara
,
J.
Keinonen
, and
M.
Leskelä
,
Chem. Vap. Deposition
8
,
199
(
2002
).
31.
J.
Niistö
,
M.
Putkonen
,
L.
Niinistö
,
S. L.
Stoll
,
K.
Kukli
,
T.
Sajavaara
,
M.
Ritala
, and
M.
Leskelä
,
J. Mater. Chem.
15
,
2271
(
2005
).
32.
M.
Putkonen
and
L.
Niinistö
,
J. Mater. Chem.
11
,
3141
(
2001
).
33.
K.
Kukli
,
M.
Ritala
, and
M.
Leskelä
,
New Materials and Processes for Incoming Semiconductors Technologies
, edited by
S.
Dueñas
and
H.
Castán
(
Transworld Research Network
,
Trivandrum, Kerala
,
2006
), pp.
1
40
.
34.
S. W.
Smith
,
A. R.
Kitahara
,
M. A.
Rodriguez
,
M. D.
Henry
,
M. T.
Brumbach
, and
J. F.
Ihlefeld
,
Appl. Phys. Lett.
110
,
072901
(
2017
).
35.
S.
Bang
,
S.
Lee
,
S.
Jeon
,
S.
Kwon
,
W.
Jeong
,
S.
Kim
, and
H.
Jeon
,
J. Electrochem. Soc.
155
,
H633
(
2008
).
36.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
37.
R. I.
Hegde
,
D. H.
Triyoso
,
S. B.
Samavedam
, and
B. E.
White
,
J. Appl. Phys.
101
,
074113
(
2007
).
38.
S.
Migita
,
H.
Ota
,
K.
Shibuya
,
H.
Yamada
,
A.
Sawa
,
T.
Matsukawa
, and
A.
Toriumi
,
Jpn. J. Appl. Phys.
58
,
SBBA07
(
2019
).
39.
E.
Yurchuk
,
J.
Müller
,
S.
Knebel
,
J.
Sundqvist
,
A. P.
Graham
,
T.
Melde
,
U.
Schröder
, and
T.
Mikolajick
,
Thin Solid Films
533
,
88
(
2013
).
40.
R.
Suyama
,
H.
Takubo
, and
S.
Kume
,
J. Am. Ceram. Soc.
68
,
C-237
(
1985
).
41.
Z.
Chen
,
N.
Prud’homme
,
B.
Wang
, and
V.
Ji
,
Surf. Coat. Technol.
206
,
405
(
2011
).
42.
U.
Schroeder
,
K.
Cho
, and
S.
Slesazeck
,
Thin Films on Silicon
(
World Scientific
,
Singapore
,
2016
), pp.
369
401
.
43.
D.-S.
Kil
 et al,
2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers,
Honolulu, HI, 2006 (
IEEE
,
Honolulu, HI
,
2006
), pp.
38
39
.
44.
J.
Muller
 et al,
2012 Symposium on VLSI Technology (VLSIT),
Honolulu, HI, 2006 (
IEEE
,
Honolulu, HI
,
2012
), pp.
25
26
.
45.
Z.
Fan
,
J.
Chen
, and
J.
Wang
,
J. Adv. Dielectr.
06
,
1630003
(
2016
).
46.
T.
Mittmann
,
F. P. G.
Fengler
,
C.
Richter
,
M. H.
Park
,
T.
Mikolajick
, and
U.
Schroeder
,
Microelectron. Eng.
178
,
48
(
2017
).
47.
D. H.
Triyoso
,
R.
Gregory
,
M.
Park
,
K.
Wang
, and
S. I.
Lee
,
J. Electrochem. Soc.
155
,
H43
(
2008
).
You do not currently have access to this content.