Scientific breakthroughs in silicon surface passivation have enabled commercial high-efficiency photovoltaic devices making use of the black silicon nanostructure. In this study, the authors report on factors that influence the passivation stability of black silicon realized with industrially viable spatial atomic layer deposited (SALD) aluminum oxide (AlOx) under damp heat exposure and light soaking. Damp heat exposure conditions are 85 °C and 85% relative humidity, and light soaking is performed with 0.6 sun illumination at 75 °C. It is demonstrated that reasonably thick (20 nm) passivation films are required for both black and planar surfaces in order to provide stable surface passivation over a period of 1000 h under both testing conditions. Both surface textures degrade at similar rates with 5 and 2 nm thick films. The degradation mechanism under damp heat exposure is found to be different from that in light soaking. During damp heat exposure, the fixed charge density of AlOx is reduced, which decreases the amount of field-effect passivation. Degradation under light soaking, on the other hand, is likely to be related to interface defects between silicon and the passivating film. Finally, a thin chemically grown SiOx layer at the interface between the AlOx film and the silicon surface is shown to significantly increase the passivation stability under both light soaking and damp heat exposure. The results of this study provide valuable insights into surface passivation degradation mechanisms on nanostructured silicon surfaces and pave the way for the industrial production of highly stable black silicon devices.

1.
M. A.
Juntunen
,
J.
Heinonen
,
V.
Vähänissi
,
P.
Repo
,
D.
Valluru
, and
H.
Savin
,
Nat. Photonics
10
,
777
(
2016
).
2.
H.
Savin
,
P.
Repo
,
G.
von Gastrow
,
P.
Ortega
,
E.
Calle
,
M.
Garin
, and
R.
Alcubilla
,
Nat. Nanotechnol.
10
,
624
629
(
2015
).
3.
B.
Hoex
,
J. J. H.
Gielis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
,
113703
(
2008
).
4.
R. S.
Bonilla
,
B.
Hoex
,
P.
Hamer
, and
P. R.
Wilshaw
,
Phys. Status Solidi A
214
,
1700239
(
2017
).
5.
P.
Repo
,
A.
Haarahiltunen
,
L.
Sainiemi
,
M.
Yli-Koski
,
H.
Talvitie
,
M. C.
Schubert
, and
H.
Savin
,
IEEE J. Photovoltaics
3
,
90
(
2013
).
6.
G.
von Gastrow
,
R.
Alcubilla
,
P.
Ortega
,
M.
Yli-Koski
,
S.
Conesa-Boj
,
A.
Fontcuberta i Morral
, and
H.
Savin
,
Sol. Energy Mater. Sol. Cells
142
,
29
(
2015
).
7.
Elfys Inc
., “Technology”, accessed 25 October 2019, see: https://www.elfys.fi/index.php/technology/.
8.
PVTech
,
D.
Ola
, “GCL-SI hits 20.6% efficiency for its multicrystalline PERC solar cells”, accessed 25 October 2019, see: https://www.pv-tech.org/news/gcl-si-breaks-efficiency-record-with-20.6-for-its-multicrystalline-perc-sol.
9.
PVTech
,
M.
Osborne
, “Canadian solar placing major bet on next-gen p-type multi cell technology”, accessed 25 October 2019, see: https://www.pv-tech.org/editors-blog/canadian-solar-placing-major-bet-on-next-gen-p-type-multi-cell-technology.
10.
T. P.
Pasanen
 et al,
35th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC Proceedings
, Brussels, 24–28 September 2018 (
EU PVSEC
,
Munich, Germany
,
2018
), pp. 552–556.
11.
D.
Payne
,
T. H.
Fung
,
M. U.
Khan
,
J.
Cruz-Campa
,
K.
McIntosh
, and
M.
Abbott
,
AIP Conf. Proc.
1999
,
050007
(
2018
).
12.
G.
Dingemans
and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
,
040802
(
2012
).
13.
P.
Poodt
,
D. C.
Cameron
,
S. M.
George
,
V.
Kuznetzov
,
G. N.
Parsons
,
F.
Roozeboom
,
G.
Sundaram
, and
A.
Vermeer
,
J. Vac. Sci. Technol. A
30
,
010802
(
2012
).
14.
F.
Kersten
 et al,
Sol. Energy Mater. Sol. Cells
143
,
83
(
2015
).
15.
D.
Sperber
,
A.
Herguth
, and
G.
Hahn
,
Energy Procedia
92
,
211
(
2016
).
16.
D.
Sperber
,
A.
Schwarz
,
A.
Herguth
, and
G.
Hahn
,
Sol. Energy Mater. Sol. Cells
188
,
112
(
2018
).
17.
D.
Sperber
, “
Bulk and surface related degradation phenomena in monocrystalline silicon at elevated temperature and illumination
,”
doctoral dissertation
(
University of Konstanz
,
2019)
.
18.
T.
Niewelt
,
W.
Kwapil
,
M.
Selinger
,
A.
Richter
, and
M. C.
Schubert
,
IEEE J. Photovoltaics
7
,
1197
(
2017
).
19.
K.
Kim
,
R.
Chen
,
D.
Chen
,
P.
Hamer
,
A.
Ciesla nee Wenham
,
S.
Wenham
, and
Z.
Hameiri
,
IEEE J. Photovoltaics
9
,
97
(
2019
).
20.
W.
Liang
,
K. J.
Weber
,
D.
Suh
,
J.
Yu
,
J.
Bullock
,
IEEE 39th Photovoltaic Specialists Conference (PVSC) Part 2
, Tampa, FL, 16–21 June 2013 (
IEEE
,
New York
,
2013
), pp. 038–044.
21.
W.
Liang
,
D.
Suh
,
J.
Yu
,
J.
Bullock
, and
K. J.
Weber
,
Phys. Status Solidi A
212
,
274
(
2015
).
22.
D.
Pan
,
T.-C.
Jen
, and
C.
Yuan
,
Int. J. Heat Mass Transfer
96
,
189
(
2016
).
23.
D.
Pan
,
Int. J. Heat Mass Transfer
144
,
118642
(
2019
).
24.
N. E.
Grant
,
V. P.
Markevich
,
J.
Mullins
,
A. R.
Peaker
,
F.
Rougieux
, and
D.
Macdonald
,
Phys. Status Solidi RRL
10
,
443
(
2016
).
25.
M. L.
Green
 et al,
J. Appl. Phys.
92
,
7168
(
2002
).
26.
I. T. S.
Heikkinen
,
P.
Repo
,
V.
Vähänissi
,
T.
Pasanen
,
V.
Malinen
, and
H.
Savin
,
Energy Procedia
124
,
282
(
2017
).
27.
R. A.
Sinton
and
A.
Cuevas
,
Appl. Phys. Lett.
69
,
2510
(
1996
).
28.
T.
Trupke
,
B.
Mitchell
,
J. W.
Weber
,
W.
McMillan
,
R. A.
Bardos
, and
R.
Kroeze
,
Energy Procedia
15
,
135
(
2012
).
29.
M.
Wilson
,
J.
Lagowski
,
L.
Jastrzebski
,
A.
Savtchouk
, and
V.
Faifer
,
AIP Conf. Proc
550
,
220
(
2001
).
30.
G.
Kumaravelu
,
M. M.
Alkaisi
,
A.
Bittar
,
D.
Macdonald
, and
J.
Zhao
,
Curr. Appl. Phys
4
,
108
(
2004
).
31.
B.
Liao
,
R.
Stangl
,
T.
Mueller
,
F.
Lin
,
C. S.
Bhatia
, and
B.
Hoex
,
J. Appl. Phys.
113
,
024509
(
2013
).
32.
I. T. S.
Heikkinen
,
G.
Koutsourakis
,
S.
Wood
,
V.
Vähänissi
,
F. A.
Castro
, and
H.
Savin
,
AIP Conf. Proc.
2147
,
050003
(
2019
).
33.
Y.
Bao
,
S.
Li
,
G.
von Gastrow
,
P.
Repo
,
H.
Savin
, and
M.
Putkonen
,
J. Vac. Sci. Technol. A
33
,
01A123-1
(
2015
).
34.
D.
Schröder
,
IEEE Trans. Electron Devices
44
,
160
(
1997
).
You do not currently have access to this content.