In this paper, the authors describe the conditions under which Fe forms encapsulated nanocrystals beneath the surface of graphite, and they characterize these islands (graphite + Fe) thoroughly. The authors use the experimental techniques of scanning tunneling microscopy (STM) plus x-ray photoelectron spectroscopy (XPS) and the computational technique of density functional theory (DFT). Necessary conditions for encapsulation are preexisting ion-induced defects in the graphite substrate and elevated deposition temperature of 875–900 K. Evidence of encapsulation consists of atomically resolved STM images of a carbon lattice, both on top of the islands and on the sloping sides. The nature of the images indicates that this carbon lattice corresponds to a graphene blanket consisting of more than one graphene sheet that drapes continuously from the top of the island to the graphite substrate. The formation of iron carbide is not observed based on XPS. Shapes of the island footprints are consistent with metallic Fe, predominantly in the hcp or fcc form, though larger islands tend toward bcc. Island structures with hexagonally close-packed lateral hcp or fcc planes are stabilized by their excellent lattice match with the graphite substrate. Evolution of island density with prolonged deposition time provides evidence of coarsening, perhaps via Smoluchowski ripening. The encapsulated Fe clusters are stable in air at room temperature, protected by smaller Fe clusters that decorate defect sites and block permeation of gases. DFT shows that two configurations of Fe are more stable within the gallery than adsorbed on top of the surface: a single atom of Fe and a film (slab) of metallic Fe. Comparison with other metals shows that encapsulated Fe is similar to Cu but dissimilar to Ru or Dy, leading the authors to conclude that carbon dissolution in the metal does not play a role in encapsulation.

1.
A.
Lii-Rosales
,
Y.
Han
,
J. W.
Evans
,
D.
Jing
,
Y.
Zhou
,
M. C.
Tringides
,
M.
Kim
,
C.-Z.
Wang
, and
P. A.
Thiel
,
J. Phys. Chem. C
122
,
4454
(
2018
).
2.
A.
Lii-Rosales
 et al.,
Nanotechnology
29
,
505601
(
2018
).
3.
Y.
Zhou
,
A.
Lii-Rosales
,
M.
Kim
,
M.
Wallingford
,
D.
Jing
,
M. C.
Tringides
,
C.-Z.
Wang
, and
P. A.
Thiel
,
Carbon
127
,
305
(
2018
).
4.
H.
Okamoto
,
J. Phase Equilib.
13
,
543
(
1992
).
5.
G. A.
López
and
E. J.
Mittemeijer
,
Scr. Mater.
51
,
1
(
2004
).
6.
G.-Y.
Adachi
,
N.
Imanaka
, and
F.
Zhang
, “
Rare earth carbides
,” in
Handbook on the Physics and Chemistry of Rare Earths
(
Elsevier
,
New York
,
1991
), Vol. 15, Chap. 99, p.
61
.
7.
N. R.
Sanjay Kumar
,
N. V.
Chandra Shekar
,
S.
Chandra
,
J.
Basu
,
R.
Divakar
, and
P. C.
Sahu
,
J. Phys. Condens. Matter
24
,
362202
(
2012
).
8.
Z.
Zhao
 et al.,
Nanoscale
6
,
10370
(
2014
).
9.
C. P.
Kempter
and
M. R.
Nadler
,
J. Chem. Phys.
33
,
1580
(
1960
).
10.
X.
Chen
 et al.,
Chem. Sci.
6
,
3262
(
2015
).
11.
N. A.
Vinogradov
 et al.,
Phys. Rev. Lett.
109
,
026101
(
2012
).
12.
Y.
You
,
M.
Yoshimura
,
S.
Cholake
,
G.-H.
Lee
,
V.
Sahajwalla
, and
R.
Joshi
,
Adv. Mater. Interface
5
,
1800599
(
2018
).
14.
X.
Li
,
W.
Cai
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
,
4268
(
2009
).
15.
J. M.
Wofford
,
S.
Nie
,
K. F.
McCarty
,
N. C.
Bartelt
, and
O. D.
Dubon
,
Nano Lett.
10
,
4890
(
2010
).
16.
C.
Mattevi
,
H.
Kim
, and
M.
Chhowalla
,
J. Mater. Chem.
21
,
3324
(
2011
).
17.
R.
Muñoz
and
C.
Gómez-Aleixandre
,
Chem. Vap. Deposition
19
,
297
(
2013
).
18.
T.
Wu
 et al.,
Nat. Mater.
15
,
43
(
2015
).
19.
P.-J.
Hsu
,
J.
Kügel
,
J.
Kemmer
,
F.
Parisen Toldin
,
T.
Mauerer
,
M.
Vogt
,
F.
Assaad
, and
M.
Bode
,
Nat. Commun.
7
,
10949
(
2016
).
20.
G. A.
Somorjai
and
Y.
Li
,
Introduction to Surface Chemistry and Catalysis
, 2nd ed. (John Wiley & Sons Place, Hoboken, NJ,
2010
).
21.
K. W.
Kolasinski
,
Surface Science: Foundations of Catalysis and Nanoscience
(
Wiley
,
Chichester
,
2008
).
22.
W.-X.
Zhang
,
J. Nanopart. Res.
5
,
323
(
2003
).
23.
J. R.
Hahn
and
H.
Kang
,
Phys. Rev. B
60
,
6007
(
1999
).
24.
H. A.
Mizes
and
J. S.
Foster
,
Science
244
,
559
(
1989
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
26.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
27.
K.
Jiří
,
R. B.
David
, and
M.
Angelos
,
J. Phys. Condens. Matter
22
,
022201
(
2010
).
28.
Y.
Han
,
K. C.
Lai
,
A.
Lii-Rosales
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Surf. Sci.
685
,
48
(
2019
).
29.
D.
Bernal John
and
L.
Bragg William
,
Proc. R. Soc. A
106
,
749
(
1924
).
30.
Y.
Han
,
A.
Lii-Rosales
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Phys. Rev. B
99
,
115415
(
2019
).
31.
H. C.
Herper
,
E.
Hoffmann
, and
P.
Entel
,
Phys. Rev. B
60
,
3839
(
1999
).
32.
E. R.
Jette
and
F.
Foote
,
J. Chem. Phys.
3
,
605
(
1935
).
33.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1996
).
34.
S. V.
Radcliffe
and
M.
Schatz
,
Acta Mater.
10
,
201
(
1962
).
35.
H. K.
Mao
,
W. A.
Bassett
, and
T.
Takahashi
,
J. Appl. Phys.
38
,
272
(
1967
).
36.
A.
Lii-Rosales
 et al., “Shapes of Fe nanocrystals encapsulated at the graphite surface” (unpublished).
37.
M. M.
Ugeda
,
I.
Brihuega
,
F.
Guinea
, and
J. M.
Gómez-Rodríguez
,
Phys. Rev. Lett.
104
,
096804
(
2010
).
38.
F.
Atamny
,
O.
Spillecke
, and
R.
Schlogl
,
Phys. Chem. Chem. Phys.
1
,
4113
(
1999
).
39.
S. E.
Julien
,
A.
Lii-Rosales
,
K.-T.
Wan
,
Y.
Han
,
M. C.
Tringides
,
J. W.
Evans
, and
P. A.
Thiel
,
Nanoscale
11
,
6445
(
2019
).
40.
E.
Sutter
,
D. P.
Acharya
,
J. T.
Sadowski
, and
P.
Sutter
,
Appl. Phys. Lett.
94
,
133101
(
2009
).
41.
S.
Marchini
,
S.
Günther
, and
J.
Wintterlin
,
Phys. Rev. B
76
,
075429
(
2007
).
42.
E.
Hegenberger
,
N. L.
Wu
, and
J.
Phillips
,
J. Phys. Chem.
91
,
5067
(
1987
).
43.
D. D. L.
Chung
,
J. Mater. Sci.
37
,
1475
(
2002
).
44.
G.
Panzner
and
W.
Diekmann
,
Surf. Sci.
160
,
253
(
1985
).
45.
F.
Bonnet
,
F.
Ropital
,
P.
Lecour
,
D.
Espinat
,
Y.
Huiban
,
L.
Gengembre
,
Y.
Berthier
, and
P.
Marcus
,
Surf. Interface Anal.
34
,
418
(
2002
).
46.
J.
Shen
,
P.
Ohresser
,
C. V.
Mohan
,
M.
Klaua
,
J.
Barthel
, and
J.
Kirschner
,
Phys. Rev. Lett.
80
,
1980
(
1998
).
47.
P.
Ohresser
,
J.
Shen
,
J.
Barthel
,
M.
Zheng
,
C. V.
Mohan
,
M.
Klaua
, and
J.
Kirschner
,
Phys. Rev. B
59
,
3696
(
1999
).
48.
J.
Shen
,
J. P.
Pierce
,
E. W.
Plummer
, and
J.
Kirschner
,
J. Phys. Condens. Matter
15
,
R1
(
2003
).
49.
E.
Bauer
and
J. H.
van der Merwe
,
Phys. Rev. B
33
,
3657
(
1986
).
50.
R.
Tran
,
Z.
Xu
,
B.
Radhakrishnan
,
D.
Winston
,
W.
Sun
,
K. A.
Persson
, and
S. P.
Ong
,
Sci. Data
3
,
160080
(
2016
).
51.
J.
Yu
,
X.
Lin
,
J.
Wang
,
J.
Chen
, and
W.
Huang
,
Appl. Surf. Sci.
255
,
9032
(
2009
).
52.
J. A.
Venables
,
Introduction to Surface and Thin Film Processes
(
Cambridge University
,
Cambridge
,
2000
).
53.
E.
Kaldis
,
Current Topics in Materials Science
(
North Holland
,
Amsterdam
,
1979
), Vol. 3.
54.
D.
Appy
,
H.
Lei
,
C.-Z.
Wang
,
M. C.
Tringides
,
D.-J.
Liu
,
J. W.
Evans
, and
P. A.
Thiel
,
Prog. Surf. Sci.
89
,
219
(
2014
).
55.
K. C.
Lai
,
Y.
Han
,
P.
Spurgeon
,
W.
Huang
,
P. A.
Thiel
,
D.-J.
Liu
, and
J. W.
Evans
,
Chem. Rev.
119
,
6670
(
2019
).
56.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
43
,
689
(
2011
).
57.
G.
Bhargava
,
I.
Gouzman
,
C. M.
Chun
,
T. A.
Ramanarayanan
, and
S. L.
Bernasek
,
Appl. Surf. Sci.
253
,
4322
(
2007
).
58.
S.
Suzuki
,
Y.
Ishikawa
,
M.
Isshiki
, and
Y.
Waseda
,
Mater. Trans.
38
,
1004
(
1997
).
59.
D.
Wilson
and
M. A.
Langell
,
Appl. Surf. Sci.
303
,
6
(
2014
).
60.
H.
Tian
 et al.,
Chem. Eng. J.
313
,
1051
(
2017
).
61.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
11
,
1
(
1982
).
62.
D.
Talbot
and
J.
Talbot
,
Corrosion Science and Technology
(
CRC
,
Boca Raton
,
1998
).
63.
T.
Tanupabrungsun
,
D.
Young
,
B.
Brown
, and
S.
Nešic
, “
Construction And Verification of Pourbaix Diagrams For CO2 Corrosion of Mild Steel Valid Up to 250C
,” in
CORROSION 2012
, (NACE International, Salt Lake City, Utah,
2012
) p. 16.
64.
Y.
Han
,
A.
Lii-Rosales
,
Y.
Zhou
,
C. J.
Wang
,
M.
Kim
,
M. C.
Tringides
,
C. Z.
Wang
,
P. A.
Thiel
, and
J. W.
Evans
,
Phys. Rev. Mater.
1
,
053403
(
2017
).
65.
L.
Yu
,
C.
Du
, and
X.
Liu
,
Mater. Res. Express
5
,
025022
(
2018
).
66.
A.
Lii-Rosales
,
Y.
Zhou
,
M.
Wallingford
,
C.-Z.
Wang
,
M. C.
Tringides
, and
P. A.
Thiel
,
Phys. Rev. Mater.
1
,
026002
(
2017
).
67.
See supplementary material at https://doi.org/10.1116/1.5124927 for additional experimental details, XPS spectra of Fe, examples of merged Fe islands, and details for DFT calculations.

Supplementary Material

You do not currently have access to this content.