Nanolayer stacks are technologically very relevant for current and future applications in many fields of research. A nondestructive characterization of such systems is often performed using x-ray reflectometry (XRR). For complex stacks of multiple layers, low electron density contrast materials, or very thin layers without any pronounced angular minima, this requires a full modeling of the XRR data. As such a modeling is using the thicknesses, the densities, and the roughnesses of each layer as parameters, this approach quickly results in a large number of free parameters. In consequence, cross correlation effects or interparameter dependencies can falsify the modeling results. Here, the authors present a route for validation of such modeling results which is based on the reference-free grazing incidence x-ray fluorescence (GIXRF) methodology. In conjunction with the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt, the method allows for reference-free quantification of the elemental mass depositions. In addition, a modeling approach of reference-free GIXRF-XRR data is presented, which takes advantage of the quantifiable elemental mass depositions by distributing them depth dependently. This approach allows for a reduction of the free model parameters. Both the validation capabilities and the combined reference-free GIXRF-XRR modeling are demonstrated using several nanoscale layer stacks consisting of HfO2 and Al2O3 layers.

1.
S.
King
,
H.
Simka
,
D.
Herr
,
H.
Akinaga
, and
M.
Garner
,
APL Mater.
1
,
040701
(
2013
).
3.
J.
Azadmanjiri
,
C.
Berndt
,
J.
Wang
,
A.
Kapoor
,
V.
Srivastava
, and
C.
Wen
,
J. Mater. Chem. A
2
,
3695
(
2014
).
4.
B.
Bunday
,
Proc. SPIE
9778
,
97780E
(
2016
).
5.
B.
Bunday
,
E.
Solecky
,
A.
Vaid
,
A.
Bello
, and
X.
Dai
,
Proc. SPIE
10145
,
101450G
(
2017
).
6.
P.
Colombi
et al.,
J. Appl. Crystallogr.
41
,
143
(
2008
).
7.
J.
Wernecke
,
A.
Shard
, and
M.
Krumrey
,
Surf. Interface Anal.
46
,
911
(
2014
).
8.
A.
Haase
,
S.
Bajt
,
P.
Hönicke
,
V.
Soltwisch
, and
F.
Scholze
,
J. Appl. Crystallogr.
49
,
2161
(
2016
).
9.
J.
Tiilikainen
,
V.
Bosund
,
J.-M.
Tilli
,
J.
Sormunen
,
M.
Mattila
,
T.
Hakkarainen
, and
H.
Lipsanen
,
J. Phys. D Appl. Phys.
40
,
6000
(
2007
).
10.
D.
Gil
and
D.
Windover
,
J. Phys. D Appl. Phys.
45
,
235301
(
2012
).
11.
B.
Beckhoff
,
R.
Fliegauf
,
M.
Kolbe
,
M.
Müller
,
J.
Weser
, and
G.
Ulm
,
Anal. Chem.
79
,
7873
(
2007
).
12.
B.
Beckhoff
,
J. Anal. At. Spectrom.
23
,
845
(
2008
).
13.
B.
Beckhoff
,
A.
Gottwald
,
R.
Klein
,
M.
Krumrey
,
R.
Müller
,
M.
Richter
,
F.
Scholze
,
R.
Thornagel
, and
G.
Ulm
,
Phys. Status Solidi B
246
,
1415
(
2009
).
14.
P.
Hönicke
et al.,
Spectrochim. Acta B
145
,
36
(
2018
).
15.
M.
Müller
,
P.
Hönicke
,
B.
Detlefs
, and
C.
Fleischmann
,
Materials
7
,
3147
(
2014
).
16.
P.
Hönicke
,
B.
Beckhoff
,
M.
Kolbe
,
D.
Giubertoni
,
J.
van den Berg
, and
G.
Pepponi
,
Anal. Bioanal. Chem.
396
,
2825
(
2010
).
17.
D.
de Boer
,
A.
Leenaers
, and
W.
van den Hoogenhof
,
X-ray Spectrom.
24
,
91
(
1995
).
18.
V.
Soltwisch
,
P.
Hönicke
,
Y.
Kayser
,
J.
Eilbracht
,
J.
Probst
,
F.
Scholze
, and
B.
Beckhoff
,
Nanoscale
10
,
6177
(
2018
).
19.
X.
Lan
et al.,
J. Appl. Phys.
114
,
044104
(
2013
).
20.
A.
Ulyanenkov
,
Proc. SPIE
5536
, 1 (
2004
).
21.
M.
Björck
and
G.
Andersson
,
J. Appl. Cryst.
40
,
1174
(
2007
).
22.
F.
Senf
,
U.
Flechsig
,
F.
Eggenstein
,
W.
Gudat
,
R.
Klein
,
H.
Rabus
, and
G.
Ulm
,
J. Synchrotron Rad.
5
,
780
(
1998
).
23.
M.
Krumrey
,
J. Synchrotron Rad.
5
,
6
(
1998
).
24.
J.
Lubeck
,
B.
Beckhoff
,
R.
Fliegauf
,
I.
Holfelder
,
P.
Hönicke
,
M.
Müller
,
B.
Pollakowski
,
F.
Reinhardt
, and
J.
Weser
,
Rev. Sci. Instrum.
84
,
045106
(
2013
).
25.
F.
Scholze
and
M.
Procop
,
X-ray Spectrom.
30
,
69
(
2001
).
26.
F.
Scholze
and
M.
Procop
,
X-ray Spectrom.
38
,
312
(
2009
).
27.
S.
Sintonen
,
S.
Ali
,
O. E.
Ylivaara
,
R.
Puurunen
, and
H.
Lipsanen
,
J. Vac. Sci. Technol. A
32
,
01A111
(
2014
).
28.
K.
Kukli
,
M.
Ritala
,
T.
Sajavaara
,
J.
Keinonen
, and
M.
Leskelä
,
Chem. Vap. Depos.
8
,
199
(
2002
).
29.
T.
Schoonjans
,
A.
Brunetti
,
B.
Golosio
,
M. S.
del Rio
,
V.
Solé
,
C.
Ferrero
, and
L.
Vincze
,
Spectrochim. Acta B
66
,
776
(
2011
).
30.
P.
Hönicke
,
M.
Kolbe
,
M.
Krumrey
,
R.
Unterumsberger
, and
B.
Beckhoff
,
Spectrochim. Acta B
124
,
94
(
2016
).
31.
M.
Kolbe
,
P.
Hönicke
,
M.
Müller
, and
B.
Beckhoff
,
Phys. Rev. A
86
,
042512
(
2012
).
32.
B.
Pollakowski
and
B.
Beckhoff
,
Anal. Chem.
87
,
7705
(
2015
).
33.
M.
Knez
,
Semicond. Sci. Technol.
27
,
074001
(
2012
).
34.
N.
Miyata
,
M.
Ichikawa
,
T.
Nabatame
,
T.
Horikawa
, and
A.
Toriumi
,
Jpn. J. Appl. Phys.
42
,
L138
(
2003
).
35.
S.
Ferrari
and
M.
Fanciulli
,
J. Phys. Chem. B
110
,
14905
(
2006
).
36.
P.
Hönicke
,
B.
Detlefs
,
M.
Müller
,
E.
Darlatt
,
E.
Nolot
,
H.
Grampeix
, and
B.
Beckhoff
,
Phys. Status Solidi A
212
,
523
(
2015
).
37.
D.
Ingerle
,
F.
Meirer
,
G.
Pepponi
,
E.
Demenev
,
D.
Giubertoni
,
P.
Wobrauschek
, and
C.
Streli
,
Spectrochim. Acta B
99
,
121
(
2014
).
38.
C.
Jeynes
and
J.
Colaux
,
Analyst
141
,
5944
(
2016
).
You do not currently have access to this content.