Wafer bonding can be substituted for heteroepitaxy when manufacturing specific heterojunction-based devices. Devices manufactured using wafer bonding include multijunction solar cells, integrated sensors, heterogeneously integrated photonic devices on Si (such as high-performance laser diodes), Mach-Zehnder modulators, photodetectors, optical filters, and surface acoustic wave devices. In these devices, creating heterointerfaces between different semiconductors with heavily mismatched lattice constants and/or significant thermal expansion mismatch presents significant challenges for heteroepitaxial growth. High costs and poor yields in heavily mismatched heteroepitaxy can be addressed by wafer bonding in these optoelectronic devices and sensors, including the LiTaO3/Si and LiTaO3/SiO2 heterostructures. In the present work, heterostructure formation between piezoelectric LiTaO3 (100) and Si (100) and α-quartz SiO2 (100) is investigated via wafer bonding. Direct bonding is selected instead of heteroepitaxy due to a significant thermal expansion mismatch between LiTaO3 and Si-based materials. The coefficient of thermal expansion (CTE) of LiTaO3 is 18.3 × 10−6/K. This is 1 order of magnitude larger than the CTE for Si, 2.6–2.77 × 10−6/K and 25–30 times larger than the CTE for fused SiO2 and quartz (which ranges 0.54–0.76 × 10−6/K). Thus, even at 200 °C, a 4 in. LiTaO3/Si bonded pair would delaminate with LiTaO3 expanding 300 μm in length while Si would expand only by 40 μm. Therefore, direct wafer bonding of LiTaO3/Si and LiTaO3/SiO2 is investigated with low temperature (T < 500 K) Nano-Bonding™, which uses surface energy engineering (SEE). SEE is guided by fast, high statistics surface energy measurements using three liquid contact angle analysis, the van Oss/van Oss–Chaudhury–Good theory, and a new, fast Drop Reflection Operative Program analysis algorithm. Bonding hydrophobic LiTaO3 to hydrophilic Si or SiO2 is found to be more effective than hydrophilic LiTaO3 to hydrophobic Si or SiO2 temperatures for processing LiTaO3 are limited by thermal decomposition LiTaO3 into Ta2O5 at T ≥ 180 °C due to Li out-diffusion as much as by LiTaO3 fractures due to thermal mismatch.

1.
Q. Y.
Tong
,
U.
Gösele
,
C.
Yuan
,
A. J.
Steckl
, and
M.
Reiche
,
J. Electrochem. Soc.
142
,
232
(
1995
).
2.
U.
Gösele
and
Q. Y.
Tong
,
Annu. Rev. Mater. Sci.
28
,
215
(
1998
).
3.
D.
Liang
 et al.,
Appl. Phys. A
103
,
213
(
2011
).
4.
U.
Gösele
 et al.,
J. Vac. Sci. Technol A
17
,
1145
(
1999
).
5.
S.
Panchanan
,
S.
Dutta
,
K.
Mallem
,
S.
Sanyal
,
J.
Park
,
M.
Ju
,
Y. H.
Cho
,
E.-C.
Cho
, and
J.
Yi
,
Curr. Photovolt. Res.
6
,
109
(
2018
).
6.
T.
Naito
and
K.
Tanabe
,
Nanomaterials
8
,
1048
(
2018
).
7.
K. H.
Lee
,
S.
Bao
,
Y.
Lin
,
W.
Li
,
P.
Anantha
,
L.
Zhang
,
Y.
Wang
,
J.
Michel
,
E. A.
Fitzgerald
, and
C. S.
Tan
,
J. Mater. Res.
32
,
4025
(
2017
).
8.
S. J.
Cunningham
,
M.
Kupnik
, and
M. E. M. S.
Materials
, “
Wafer bonding
,” in
Processes Handbook
, edited by
A.
Ghodssi
and
P.
Lin
(
Springer Verlag
, Berlin
2011
), Chap. 11, p.
817
.
9.
G.
Wu
,
J.
Xu
,
X.
Zhang
,
N.
Wang
,
D.
Yan
,
J. L. K.
Lim
,
Y.
Zhu
,
W.
Li
, and
Y.
Gu
,
IEEE Trans. Industr. Electron.
65
,
3576
(
2018
).
10.
D. S.
Akerib
 et al.,
Astropart. Phys.
96
,
1
(
2017
).
11.
A.
Beling
,
2018 IEEE Photonics Conference (IPC),
Reston, VA, 30 September–4 October (IEEE, New York,
2018
), pp.
1
2
.
12.
A.
Hilton
and
D.
Temple
,
Sensors
16
,
1819
(
2016
).
13.
T.
Hiraki
 et al.,
ECS Trans.
86
,
11
(
2018
).
14.
K.
Geshi
 et al.,
2012 IEEE International Ultrasonics Symposium,
Dresden, Germany, 7–10 October 2012 (IEEE, New York,
2012
) pp.
2726
2729
.
15.
F.
Gervais
and
V.
Fonseca
, “
Lithium tantalate (LiTaO3)
,” in
Handbook of Optical Constants of Solids
, 1st ed., edited by
E.
Palik
(
Academic
, New York,
1998
).
16.
A. H. M.
Gonzalez
,
A. Z.
Simoes
,
M. A.
Zaghete
,
E.
Longo
, and
J. A.
Varela
,
J. Electroceram.
13
,
353
(
2004
).
17.
M.
Gonzalez
, “
Impact of Li non-stoichiometry on the performance of acoustic devices on LiTaO3 and LiNbO3 single crystals
,”
Ph.D. thesis
(
University of Franche-Comté
,
2017
).
18.
N. E.
Byer
,
A.
Vanderjagt
, and
W.
Holton
, NASA Technical Report 78,
1978
, Martin Marietta Labs
19.
J.
Kirschner
, “
Surface acoustic wave sensors (SAWS): Design for application
,”
Micromechanical Systems,
Olin College, 6 December 2010 (Olin College, Needham,
2010
).
20.
K.
Onishi
,
A.
Namba
,
H.
Sato
,
T.
Ogura
,
S.
Seki
,
Y.
Taguchi
,
Y.
Tomita
,
O.
Kawasaki
, and
K.
Eda
,
1997 IEEE Ultrasonics Symposium Proceedings, Toronto, Canada, 5–8 October 1997
(
IEEE
,
New York
,
1997
), Vol. 1, pp.
227
230
.
21.
C. C.
Ruppel
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
64
,
1390
(
2017
).
22.
H.
Takagi
,
R.
Maeda
, and
T.
Suga
,
J. Micromech. Microeng.
11
,
348
(
2001
).
23.
A.
Bartasyte
 et al.,
Appl. Phys. Lett.
101
,
122902
(
2012
).
24.
N.
Herbots
,
S.
Whaley
,
R.
Culbertson
,
R.
Bennett-Kennett
,
A.
Murphy
,
M.
Bade
,
S.
Farmer
, and
B.
Hudzietz
, “
Methods for wafer bonding and for nucleating bonding nanophases using wet and steam pressurization
,” U.S. patent 9,589,801 (March 7,
2017
).
25.
N.
Herbots
,
R. J.
Culbertson
,
J.
Bradley
,
M. A.
Hart
,
D. A.
Sell
, and
S. D.
Whaley
, “
Methods for wafer bonding, and for nucleating bonding nanophases
,” U.S. patent 9,018,077 (
28 April 2015
).
26.
N.
Herbots
,
J.
Bradley
,
J. M.
Shaw
,
R. J.
Culbertson
, and
V.
Atluri
, “
Methods for preparing semiconductor substrates and interfacial oxides thereon
,” U.S. patent 7,851,365 (
14 December 2010
).
27.
R. B.
Bennett-Kennett
, “
Wet NanoBonding™: Catalyzing molecular cross-bridges and interphases between nanoscopically smoothed si-based surfaces and tailoring surface energy components
,”
Senior Honor thesis
(
Arizona State University, Physics
,
2013
).
28.
N.
Herbots
,
V. P.
Atluri
,
J. D.
Bradley
,
B.
Swati
,
Q. B.
Hurst
, and
J.
Xiang
, “
Long range ordered semiconductor interface phase and oxides
,” U.S. patent 6,613,677 (
2 September 2003
).
29.
S. D.
Whaley
, “
Nano-bonding of silicon oxides-based surfaces at low temperature: Bonding interphase modeling via molecular dynamics and characterization of bonding surfaces topography, hydro-affinity and free energy
,”
Ph.D. doctoral dissertation
(
Arizona State University, Physics
,
2011
).
30.
E. W.
Davis
, “
Wet NanobondingTM of semiconducting surfaces optimized via surface energy modification using three liquid contact angle analysis as a metrology
,”
Senior Honor thesis
(
Arizona State University, Physics
,
2016
).
31.
S. R.
Narayan
 et al.,
MRS Adv.
3
,
3379
(
2018
).
32.
C. E.
Cornejo
 et al.,
MRS Adv.
3
,
3403
(
2018
).
33.
S.
Narayan
 et al. (unpublished).
34.
S.
Narayan
and
N.
Herbots
, “
DROPTM code algorithm
,” see www.AccuAngleAnalytics.com (
2018
).
35.
R.
Faibish
,
W.
Yoshida
, and
Y.
Cohen
,
J. Colloid Interface Sci.
256
, 341 (2002).
36.
A.
Carré
,
J. Adhes. Sci. Technol.
21
,
961
(
2007
).
37.
R. J.
Good
and
C. J.
van Oss
, “
The modern theory of contact angles and the hydrogen bond components of surface energies
,” in
Modern Approaches to Wettability
, edited by
M. E.
Schrader
and
G. I.
Loeb
(
Springer
,
Boston
,
MA
,
1991
).
38.
C. J. V.
Oss
,
M. K.
Chaudhury
, and
R. J.
Good
,
Chem. Rev.
88
,
927
(
1988
).
39.
W. A.
Zisman
,
Adv. Chem. Series
43
,
1
(
1964
).
40.
P. C.
Rieke
,
J. Cryst. Growth
182
,
472
(
1997
).
41.
T.
Young
,
Philos. Trans. R. Soc. Lond.
95
,
65
(
1805
).
42.
N.
Herbots
 et al.,
Mater. Sci. Eng. B
87
,
303
(
2001
).
43.
N.
Herbots
,
Q.
Xing
,
M.
Hart
,
J. D.
Bradley
,
D. A.
Sell
,
R. J.
Culbertson
, and
B. J.
Wilkens
,
Nucl. Instrum. Methods. Phys. Res. B
272
,
330
(
2012
).
44.
J. M.
Shaw
,
N.
Herbots
,
Q. B.
Hurst
,
D.
Bradley
,
R. J.
Culbertson
,
V.
Atluri
, and
K. T.
Queeney
,
J. Appl. Phys.
100
,
104109
(
2006
).
45.
V.
Atluri
,
N.
Herbots
,
D.
Dagel
,
S.
Bhagvat
, and
S.
Whaley
,
Nucl. Instrum. Methods Phys. Res. B
118
,
144
(
1996
).
46.
K. T.
Queeney
,
N.
Herbots
,
J. M.
Shaw
,
V.
Atluri
, and
Y. J.
Chabal
,
Appl. Phys. Lett.
84
,
493
(
2004
).
47.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
48.
W.
Kern
,
J. Electrochem. Soc.
137
,
1887
(
1990
).
49.
W.
Kern
,
RCA Rev.
31
,
187
(
1970
).
50.
Y.
Zikuhara
,
E.
Higurashi
,
N.
Tamura
, and
T.
Suga
,
ECS Trans.
3
,
91
(
2006
).
51.
D.
Scrymgeour
,
A.
Itagi
,
A.
Saxena
, and
P.
Swart
,
Phys. Rev. B
71
, 184110 (
2005
).
52.
F.
Predel
, “
Phase diagram of O-Ta (oxygen-tantalum) system
,” in
Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Physical Chemistry
(
Springer
,
Berlin
,
2016
), Vol. 12D.
53.
C.
Askeljung
,
B.-O.
Marinder
, and
M.
Sundberg
,
J. Solid State Chem.
176
,
250
(
2003
).
You do not currently have access to this content.