Due to the safety challenges associated with the use of trimethylaluminum as a metal precursor for the deposition of alumina, different chemicals have been investigated over the years to replace it. The authors have investigated the use of aluminum tri-isopropoxide (TIPA) as an alternative alkoxide precursor for the safe and cost-effective deposition of alumina. In this work, TIPA is used as a stable Al source for atomic layer deposition (ALD) of Al2O3 when different oxidizing agents including water, oxygen plasma, water plasma, and ozone are employed. The authors have explored the deposition of Al2O3 using TIPA in ALD systems operating in vacuum and atmospheric pressure conditions. For thermal and plasma processes in vacuum ALD, a growth rate of 1.1–2 Å/cycle achieved over a range of 140–300 °C is shown. Film density, roughness, and composition have been tested using various characterization techniques confirming comparable film properties to the thermal ALD of trimethylaluminum and water. The thermal water process at atmospheric pressure ALD (AP-ALD) resulted in a growth rate of up to 1.1 Å/cycle with residual carbon below the XPS detection limit. AP-ALD on nanoparticles shows different growth modes on TiO2 versus SiO2 nanoparticle surfaces confirmed by transmission electron microscopy analysis. Using TIPA as an ALD precursor would open up the possibility for a safer and cost-effective process for deposition of Al2O3 in various applications.

1.
Y.
Liu
,
J.
Tolentino
,
M.
Gibbs
,
R.
Ihly
,
C. L.
Perkins
,
Y.
Liu
,
N.
Crawford
,
J. C.
Hemminger
, and
M.
Law
,
Nano Lett.
13
,
1578
(
2013
).
2.
S.
ten Cate
,
Y.
Liu
,
C. S.
Suchand Sandeep
,
S.
Kinge
,
A. J.
Houtepen
,
T. J.
Savenije
,
J. M.
Schins
,
M.
Law
, and
L. D. A.
Siebbeles
,
J. Phys. Chem. Lett.
4
,
1766
(
2013
).
3.
D.
Valdesueiro
 et al,
J. Phys. Chem. C
120
,
4266
(
2016
).
4.
S.
Jakschik
,
U.
Schroeder
,
T.
Hecht
,
G.
Dollinger
,
A.
Bergmaier
, and
J. W.
Bartha
,
Mater. Sci. Eng. B
107
,
251
(
2004
).
5.
P.
Poodt
,
A.
Lankhorst
,
F.
Roozeboom
,
K.
Spee
,
D.
Maas
, and
A.
Vermeer
,
Adv. Mater.
22
,
3564
(
2010
).
6.
S.
Dueñas
 et al,
J. Appl. Phys.
99
,
054902
(
2006
).
7.
W. M. M.
Kessels
and
M.
Putkonen
,
MRS Bull.
36
,
11
(
2011
).
8.
D.
Longrie
,
D.
Deduytsche
, and
C.
Detavernier
,
J. Vac. Sci. Technol. A
32
,
010802
(
2013
).
9.
H.
Van Bui
,
F.
Grillo
, and
J. R.
van Ommen
,
Chem. Commun.
53
,
45
(
2017
).
10.
E.
Granneman
,
P.
Fischer
,
D.
Pierreux
,
H.
Terhorst
, and
P.
Zagwijn
,
Surf. Coat. Technol.
201
,
22
(
2007
).
11.
S. M.
George
,
A. W.
Ott
, and
J. W.
Klaus
,
J. Phys. Chem.
100
,
13121
(
1996
).
12.
M.
Leskelä
and
M.
Ritala
,
Thin Solid Films
409
,
138
(
2002
).
13.
L.
Markku
and
R.
Mikko
,
Angew. Chem. Int. Ed.
42
,
5548
(
2003
).
14.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
12
(
2005
).
15.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
16.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
17.
J. A.
McCormick
,
B. L.
Cloutier
,
A. W.
Weimer
, and
S. M.
George
,
J. Vac. Sci. Technol. A
25
,
67
(
2007
).
18.
W.
Cho
,
K.
Sung
,
K.-S.
An
,
S. S.
Lee
,
T.-M.
Chung
, and
Y.
Kim
,
J. Vac. Sci. Technol. A
21
,
1366
(
2003
).
19.
S. E.
Potts
,
G.
Dingemans
,
C.
Lachaud
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
,
021505
(
2012
).
20.
A. L.
Brazeau
and
S. T.
Barry
,
Chem. Mater.
20
,
23
(
2008
).
21.
M.
Ritala
,
H.
Saloniemi
,
M.
Leskelä
,
T.
Prohaska
,
G.
Friedbacher
, and
M.
Grasserbauer
,
Thin Solid Films
286
,
54
(
1996
).
22.
S. J.
Yun
,
K.-H.
Lee
,
J.
Skarp
,
H.-R.
Kim
, and
K.-S.
Nam
,
J. Vac. Sci. Technol. A
15
,
2993
(
1997
).
23.
M.
Tiitta
,
E.
Nykänen
,
P.
Soininen
,
L.
Niinistö
,
M.
Leskelä
, and
R.
Lappalainen
,
Mater. Res. Bull.
33
,
1315
(
1998
).
24.
G.-I.
Oya
and
Y.
Sawada
,
J. Cryst. Growth
99
,
1
(
1990
).
25.
R.
Huang
and
A. H.
Kitai
,
J. Electron. Mater.
22
,
215
(
1993
).
26.
K.
Kukli
,
M.
Ritala
,
M.
Leskelä
, and
J.
Jokinen
,
J. Vac. Sci. Technol. A
15
,
2214
(
1997
).
27.
S.
Blittersdorf
,
N.
Bahlawane
,
K.
Kohse-Höinghaus
,
B.
Atakan
, and
J.
Müller
,
Chem. Vap. Deposition
9
,
194
(
2003
).
28.
A. N.
Gleizes
,
C.
Vahlas
,
M. M.
Sovar
,
D.
Samélor
, and
M. C.
Lafont
,
Chem. Vap. Deposition
13
,
23
(
2007
).
29.
J. A.
Aboaf
,
J. Electrochem. Soc.
114
,
948
(
1967
).
30.
M.
Ritala
,
K.
Kukli
,
A.
Rahtu
,
P. I.
Räisänen
,
M.
Leskelä
,
T.
Sajavaara
, and
J.
Keinonen
,
Science
288
,
319
(
2000
).
31.
L.
Hiltunen
,
H.
Kattelus
,
M.
Leskelä
,
M.
Mäkelä
,
L.
Niinistö
,
E.
Nykänen
,
P.
Soininen
, and
M.
Tiittad
,
Mater. Chem. Phys.
28
,
379
(
1991
).
32.
D. C.
Bradley
,
Nature
182
,
1211
(
1958
).
33.
V. J.
Shiner
,
D.
Whittaker
, and
V. P.
Fernandez
,
J. Am. Chem. Soc.
85
,
2318
(
1963
).
34.
G. P.
Shulman
,
M.
Trusty
, and
J. H.
Vickers
,
J. Org. Chem.
28
,
907
(
1963
).
35.
W.
Fieggen
and
H.
Gerding
,
Recl. Trav. Chim. Pays-Bas
89
,
2
(
1970
).
36.
R. H. T.
Bleyerveld
,
W.
Fieggen
, and
H.
Gerding
,
Recl. Trav. Chim. Pays-Bas
91
,
477
(
1972
).
37.
T.
Dobbelaere
,
F.
Mattelaer
,
A. K.
Roy
,
P.
Vereecken
, and
C.
Detavernier
,
J. Mater. Chem. A
5
,
330
(
2017
).
38.
A.
Goulas
and
J. Ruud
van Ommen
,
J. Mater. Chem. A
1
,
4647
(
2013
).
39.
M.
Laitinen
,
M.
Rossi
,
J.
Julin
, and
T.
Sajavaara
,
Nucl. Instrum. Methods Phys. Res. Sect. B
337
,
55
(
2014
).
40.
K.
Arstila
,
J.
Julin
,
M. I.
Laitinen
,
J.
Aalto
,
T.
Konu
,
S.
Kärkkäinen
,
S.
Rahkonen
,
M.
Raunio
,
J.
Itkonen
,
J. P.
Santanen
,
T.
Tuovinen
, and
T.
Sajavaara
,
Nucl. Instrum. Methods Phys. Res., Sect. B
331
(
2014
).
41.
R. C.
Wilhoit
,
J. Phys. Chem.
61
,
114
(
1957
).
42.
M. M.
Sovar
,
D.
Samélor
,
A. N.
Gleizes
, and
C.
Vahlas
,
Surf. Coat. Technol.
201
,
9159
(
2007
).
43.
A. W.
Ott
,
K. C.
McCarley
,
J. W.
Klaus
,
J. D.
Way
, and
S. M.
George
,
Appl. Surf. Sci.
107
,
128
(
1996
).
44.
T. B.
Tai
,
L.
Cao
,
F.
Mattelaer
,
G.
Rampelberg
,
F. S. M.
Hashemi
,
J.
Dendooven
,
J. R.
van Ommen
,
C.
Detavernier
, and
M. F.
Reyniers
,
J. Phys. Chem. C
123
,
1
(
2019
).
45.
M. D.
Groner
,
F. H.
Fabreguette
,
J. W.
Elam
, and
S. M.
George
,
Chem. Mater.
16
,
639
(
2004
).
46.
P.-L.
Etchepare
,
L.
Baggetto
,
H.
Vergnes
,
D.
Samélor
,
D.
Sadowski
,
B.
Caussat
, and
C.
Vahlas
,
Phys. Status Solidi C
12
,
944
(
2015
).
47.
Y. S.
Jung
,
A. S.
Cavanagh
,
L. A.
Riley
,
S.-H.
Kang
,
A. C.
Dillon
,
M. D.
Groner
,
S. M.
George
, and
S.-H.
Lee
,
Adv. Mater.
22
,
2172
(
2010
).
48.
J.-T.
Lee
,
F.-M.
Wang
,
C.-S.
Cheng
,
C.-C.
Li
, and
C.-H.
Lin
,
Electrochim. Acta
55
,
4002
(
2010
).
49.
L. A.
Riley
,
A. S.
Cavanagh
,
S. M.
George
,
Y. S.
Jung
,
Y.
Yan
,
S.-H.
Lee
, and
A. C.
Dillon
,
ChemPhysChem
11
,
2124
(
2010
).
50.
L. A.
Riley
,
S.
Van Atta
,
A. S.
Cavanagh
,
Y.
Yan
,
S. M.
George
,
P.
Liu
,
A. C.
Dillon
, and
S.-H.
Lee
,
J. Power Sources
196
,
3317
(
2011
).
51.
L.
Jian
and
S.
Xueliang
,
Nanotechnology
26
,
024001
(
2015
).
52.
B.
Ahmed
,
C.
Xia
, and
H. N.
Alshareef
,
Nano Today
11
,
250
(
2016
).
53.
F.
Mattelaer
,
P. M.
Vereecken
,
J.
Dendooven
, and
C.
Detavernier
,
Adv. Mater. Interfaces
4
,
1601237
(
2017
).
54.
R. C.
Mehrotra
,
J. Non-Cryst. Solids
121
,
1
(
1990
).
55.
M.
Ritala
,
M.
Leskela
,
L.
Niinisto
, and
P.
Haussalo
,
Chem. Mater.
5
,
1174
(
1993
).
56.
K.
Knapas
and
M.
Ritala
,
Crit. Rev. Solid State Mater. Sci.
38
,
167
(
2013
).
57.
A.
Rahtu
and
M.
Ritala
,
Chem. Vap. Deposition
8
,
1
(
2002
).
58.
H.
Shi
,
R.
Magaye
,
V.
Castranova
, and
J.
Zhao
,
Part. Fibre Toxicol.
10
,
1
(
2013
).
59.
A.
Bitar
,
N. M.
Ahmad
,
H.
Fessi
, and
A.
Elaissari
,
Drug Discov. Today
17
,
1147
(
2012
).
60.
Y.
Wang
 et al,
Nanomedicine
11
,
313
(
2015
).
61.
Y.
Bessekhouad
,
D.
Robert
, and
J. V.
Weber
,
J. Photochem. Photobiol. A
157
,
47
(
2003
).
62.
See supplementary material at https://doi.org/10.1116/1.5093402 for data on vapor pressure of precursor, GPC versus precursors purge time, oxidizer saturation curve, XPS analysis, and in situ mass spectrometry.

Supplementary Material

You do not currently have access to this content.