Thin films of boron nitride (BN), particularly the sp2-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN), are interesting for several electronic applications, given the bandgaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400–1800 K and 1000–10 000 Pa, respectively. In this letter, the authors use the van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. The authors find that r-BN is the stable sp2-hybridized phase at CVD conditions, while h-BN is metastable. Thus, their calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.

1.
R. H.
Wentorf
,
J. Chem. Phys.
26
,
956
(
1957
).
2.
A.
Hérold
 et al,
Comptes rendus de l'Académie des Sciences
246
,
1866
(
1958
).
3.
M.
Chubarov
,
H.
Högberg
,
A.
Henry
, and
H.
Pedersen
,
J. Vac. Sci. Technol. A
36
,
030801
(
2018
).
4.
Joint Committee on Powder Diffraction Standards, JCPDS, Swarthmore, PA, pattern 34–0421; pattern 45–1171.
5.
H. X.
Jiang
and
J. Y.
Lin
,
Semicond. Sci. Technol.
29
,
084003
(
2014
).
6.
S.
Majety
,
J.
Li
,
W. P.
Zhao
,
B.
Huang
,
S. H.
Wei
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
102
,
213505
(
2013
).
7.
N.
Izyumskaya
,
D. O.
Demchenko
,
S.
Das
,
Ü.
Özgür
,
V.
Avrutin
, and
H.
Morkoç
,
Adv. Electron. Mater.
3
,
1600485
(
2017
).
8.
J.
Bao
,
K.
Jeppson
,
M.
Edwards
,
Y.
Fu
,
L.
Ye
,
X.
Lu
, and
J.
Liu
,
Electron. Mater. Lett.
12
,
1
(
2016
).
9.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
(
2016
).
10.
L.
Xu
,
J.
Zhan
,
J.
Hu
,
Y.
Bando
,
X.
Yuan
,
T.
Sekiguchi
,
M.
Mitome
, and
D.
Golberg
,
Adv. Mater.
19
,
2141
(
2007
).
11.
M.
Chubarov
,
H.
Pedersen
,
H.
Högberg
,
J.
Jensen
, and
A.
Henry
,
Cryst. Growth Des.
12
,
3215
(
2012
).
12.
Y.
Kobayashi
and
T.
Akasaka
,
J. Cryst. Growth
310
,
5044
(
2008
).
13.
M.
Chubarov
,
H.
Pedersen
,
H.
Högberg
,
Zs.
Czigany
, and
A.
Henry
,
Cryst. Eng. Comm.
16
,
5430
(
2014
).
14.
Q.
Paduano
,
M.
Snure
,
D.
Weyburne
,
A.
Kiefer
,
G.
Siegel
, and
J.
Hu
,
J. Cryst. Growth
449
,
148
(
2016
).
15.
A.
Rice
,
A.
Allerman
,
M.
Crawford
,
T.
Beechem
,
T.
Ohta
,
C.
Spataru
,
J.
Fiegel
, and
M.
Smith
,
J. Cryst. Growth
485
,
90
(
2018
).
16.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
17.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
18.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
19.
G.
Kresse
and
J.
Furthmüller
,
Comp. Mater. Sci.
6
,
15
(
1996
).
20.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
21.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
22.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
23.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
S.
Kreig
,
J. Chem. Phys.
132
,
154104
(
2010
).
24.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comp. Chem.
32
,
1456
(
2011
).
25.
A.
Togo
and
I.
Tanaka
,
Scripta Mater.
108
,
1
(
2015
).
26.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
27.
K.
Parlinski
,
Z. Q.
Li
, and
Y.
Kawazoe
,
Phys. Rev. Lett.
78
,
4063
(
1997
).
28.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci.
30
,
382
(
1944
).
29.
F.
Birch
,
Phys. Rev.
71
,
809
(
1947
).
30.
See supplementary material at https://doi.org/10.1116/1.5107455 for vibrational free energies of c-BN, derived from calculations and a list of the Gibbs free energy difference of the four polytypes of boron nitride (r-BN, h-BN, c-BN, and w-BN) as a function of pressure ranging from 0 to 20 GPa, calculated with respect to r-BN as a reference at 0 Kelvin.
31.
W. J.
Yu
,
W. M.
Lau
,
S. P.
Chan
,
Z. F.
Liu
, and
Q. Q.
Zheng
,
Phys. Rev. B
67
,
014108
(
2003
).
32.
G.
Kern
,
G.
Kresse
, and
J.
Hafner
,
Phys. Rev. B
59
,
8551
(
1999
).
33.
A.
Onodera
,
K.
Inoue
,
H.
Yoshihara
,
H.
Nakae
, and
T.
Matsuda
,
J. Mater. Sci.
25
,
4279
(
1990
).
34.
V. L.
Solozhenko
,
V. V.
Chernyshev
,
G. V.
Fetisov
,
V. B.
Rybakov
, and
I. A.
Petrusha
,
J. Phys. Chem. Sol.
51
,
1011
(
1990
).
35.
A. V.
Kurdyumov
,
V. L.
Solozhenko
, and
W. B.
Zelyavski
,
J. Appl. Crystallogr.
28
,
540
(
1995
).
36.
B.
Yates
,
M. J.
Overy
, and
O.
Pirgon
,
Philos. Mag.
32
,
847
(
1975
).
37.
V. L.
Solozhenko
,
I. A.
Petrusha
, and
A. A.
Svirid
,
High Press. Res.
15
,
95
(
1995
).
38.
V. L.
Solozhenko
,
V. Z.
Turkevich
, and
W. B.
Holzapfel
,
J. Phys. Chem. B
103
,
2903
(
1999
).
39.
I.
Mosyagin
,
D.
Gambino
,
D. G.
Sangiovanni
,
I. A.
Abrikosov
, and
N. M.
Caffrey
,
Phys. Rev. B
98
,
174103
(
2018
).
40.
N.
Marom
,
J.
Bernstein
,
J.
Garel
,
A.
Tkatchenko
,
E.
Joselevich
,
L.
Kronik
, and
O.
Hod
,
Phys. Rev. Lett.
105
,
046801
(
2010
).
41.
A.
Marini
,
P.
García-González
, and
A.
Rubio
,
Phys. Rev. Lett.
96
,
136404
(
2006
).
42.
S.
Grimme
,
J. Comp. Chem.
27
,
1787
(
2006
).
43.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
44.
A.
Tkatchenko
,
R. A.
Di Stasio
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
45.
M.
Chubarov
,
H.
Pedersen
,
H.
Högberg
,
Zs.
Czigány
,
M.
Garbrecht
, and
A.
Henry
,
Chem. Mater.
27
,
1640
(
2015
).
46.
P.
Sutter
,
J.
Lahiri
,
P.
Zahl
,
B.
Wang
, and
E.
Sutter
,
Nano Lett.
13
,
276
(
2013
).

Supplementary Material

You do not currently have access to this content.