The authors study the nanomechanical and microtribological properties of yttrium (Y) thin films deposited by pulsed laser deposition on Cu polycrystalline substrates. Nanoindentation tests reveal that such films have a high hardness of H = 2.3 GPa and a reduced elastic modulus of 71.7 GPa with respect to the Cu substrates. The friction coefficient between a diamond tip and the Y film reaches a steady state value of μ ∼ 0.34, lower than that for the Cu (μ ∼ 0.38). Moreover, nanoscratch experiments show that Y films are more scratch-resistant than the Cu substrates, probably due to their greater hardness, higher elastic recovery, and lower friction coefficient. Their results confirm that the mechanical and tribological properties of the Y films are suitable for designing and fabricating scratch-resistant hybrid photocathodes and can reduce instabilities and unwanted discharges in the cavity of the radio-frequency gun. Furthermore, the low surface roughness and the low work function of the material are important characteristics for a photocathode based on the Y thin film for the production of high-brightness electron beams.

1.
A.
Kosińska
,
M.
Barlak
,
D.
Derewnicka-Krawczyńska
,
J.
Lorkiewicz
,
J.
Sekutowicz
, and
R.
Nietuby
,
Surf. Coat. Technol.
352
,
501
(
2018
).
2.
F.
Le Pimpec
,
C. J.
Milne
,
C. P.
Hauri
, and
F.
Ardana-Lamas
,
Appl. Phys. A
112
,
647
(
2013
).
3.
C. P.
Hauri
,
R.
Ganter
,
F.
Le Pimpec
,
A.
Trisorio
,
C.
Ruchert
, and
H. H.
Braun
,
Phys. Rev. Lett.
104
,
234802
(
2010
).
4.
E.
Allaria
 et al.,
J. Synchrotron Rad.
22
,
485
(
2015
).
5.
E.
Chiadroni
 et al.,
Appl. Phys. Lett.
102
,
094101
(
2013
).
6.
CRC Handbook of Chemistry and Physics
, 82nd ed. (
CRC
,
Boca Raton
,
FL
,
2001
).
7.
8.
S.
Di Mitri
and
M.
Cornacchia
,
Phys. Rep.
539
,
1
(
2014
).
9.
R.
Bingham
,
J. T.
Mendonça
, and
P. K.
Shukla
,
Plasma Phys. Control. Fusion
46
,
R1
(
2004
).
10.
F.
Massimo
,
A.
Marocchino
,
E.
Chiadroni
,
M.
Ferrario
,
A.
Mostacci
,
P.
Musumeci
, and
L.
Palumbo
,
Nucl. Instrum. Methods Phys. Res. A
740
,
242
(
2014
).
11.
D. H.
Dowell
and
J. F.
Schmerge
,
Phys. Rev. Special Top. Accel. Beams
12
,
074201
(
2009
).
12.
W.
Graves
,
L.
DiMauro
,
R.
Heese
,
E.
Johnson
,
J.
Rose
,
J.
Rudati
,
T.
Shaftan
, and
B.
Sheehy
,
PAC 2001, Proceedings of the 2001
(
IEEE
,
New York
,
2001
), Vol. 3, p.
2227
.
13.
A.
Lorusso
,
F.
Gontad
,
L.
Solombrino
,
E.
Chiadroni
,
E.
Broitman
, and
A.
Perrone
,
Nucl. Instrum. Methods Phys. Res. A
836
,
57
(
2016
).
14.
H. J.
Qian
,
C.
Li
,
Y. C.
Du
,
L. X.
Yan
,
J. F.
Hua
,
W. H.
Huang
, and
C. X.
Tang
,
Phys. Rev. Special Top. Accel. Beams
15
,
040102
(
2012
).
15.
E.
Broitman
,
F.
Flores-Ruiz
,
M.
Di Giulio
,
F.
Gontad
,
A.
Lorusso
, and
A.
Perrone
,
J. Vac. Sci. Technol. A
34
,
021505
(
2016
).
16.
A.
Lorusso
,
M.
Trovò
,
A.
Demidovich
,
P.
Cinquegrana
,
F.
Gontad
,
E.
Broitman
,
E.
Chiadroni
, and
A.
Perrone
,
Appl. Phys. A
123
,
779
(
2017
).
17.
R.
Ramaseshan
,
S.
Tripura Sundari
,
A. K.
Balamurugan
,
S.
Dash
,
A. K.
Tyagi
,
Y.
Sato
,
T.
Nakayama
, and
H.
Suematsu
,
Opt. Lett.
39
,
3086
(
2014
).
18.
A.
Lorusso
,
L.
Cultrera
,
V.
Fasano
, and
A.
Perrone
,
Nucl. Instrum. Methods Phys. Res. B
269
,
3091
(
2011
).
19.
J.
Scifo
 et al.,
Nucl. Instrum. Methods Phys. Res. A
909
,
233
(
2018
).
20.
S.
Di Mihai
,
A.
Marcu
, and
N.
Puscas
,
Pulsed Laser Ablation of Solids: Basics, Theory and Applications
, edited by
B.
Heidelberg
(
Springer-Verlag
,
Berlin
,
2014
).
21.
L.
Cultrera
,
M. I.
Zeifman
, and
A.
Perrone
,
Phys. Rev. B
73
,
075304
(
2006
).
22.
F.
Gontad
,
A.
Lorusso
,
A.
Klini
,
E.
Broitman
,
A.
Perrone
, and
C.
Fotakis
,
J. Vac. Sci. Technol. A
34
,
041501
(
2016
).
23.
W.
Oliver
and
G.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
24.
25.
K.
Kese
,
P.
Olsson
,
A. M.
Alvarez Holston
, and
E.
Broitman
,
J. Nucl. Mater.
487
,
113
(
2017
).
26.
B. D.
Beake
,
A. J.
Harris
, and
T. W.
Liskiewicz
,
Tribol. Mater. Surf. Interfaces
7
,
87
(
2013
).
27.
A.
Lorusso
,
M.
Anni
,
A. P.
Caricato
,
F.
Gontad
,
A.
Perulli
,
A.
Taurino
,
A.
Perrone
, and
E.
Chiadroni
,
Thin Solid Films
603
,
441
(
2016
).
28.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
29.
G.
Pintaude
,
A. R.
Hoechele
, and
G. L.
Cipriano
,
Mater. Sci. Technol.
28
,
1051
(
2012
).
30.
J.
Chen
,
Y.
Shen
,
W.
Liu
,
B. D.
Beake
,
X.
Shi
,
Z.
Wang
,
Y.
Zhang
, and
X.
Guo
,
Mat. Sci. Eng. A
656
,
216
(
2016
).
31.
D. T.
Read
,
R. R.
Keller
,
N.
Barbosa
, and
R.
Geiss
,
Metall. Mater. Trans. A
38A
,
2242
(
2007
).
32.
A.
Kareer
,
X. D.
Hou
,
N. M.
Jennet
, and
S. V.
Hainsworth
,
Philos. Mag.
96
,
3414
(
2016
).
33.
B.
Backes
,
K.
Durst
, and
M.
Goeken
,
Philos. Mag.
86
,
5541
(
2006
).
34.
I. I.
Papirov
,
V. V.
Vorobev
,
A. I.
Pikalov
, and
N. I.
Moreva
,
Phys. Status Solidi A
65
,
141
(
1981
).
35.
A. M.
Tishin
,
S. A.
Nikitin
, and
V.
Yu Bodriakov
,
J. Phys. I
5
,
525
(
1995
).
36.
M.
Ito
,
D.
Setoyama
,
J.
Matsunaga
,
H.
Muta
,
M.
Uno
, and
S.
Yamanaka
,
J. Alloys Compd.
394
,
58
(
2005
).
37.
E.
Broitman
,
Metrology and Standardization of Nanotechnology
, edited by
E.
Mansfield
,
D. L.
Kaiser
,
D.
Fujita
, and
M.
Van de Voorde
(
Wiley
,
New York
,
2017
), Chap. 12.
38.
Y.
Huang
,
F.
Zhang
,
K.
Hwang
,
W.
Nix
,
G.
Pharr
, and
G.
Feng
,
J. Mech. Phys. Solids
54
,
1668
(
2006
).
39.
N.
Xu
,
W.
Han
,
Y.
Wang
, and
Z.
Shan
,
Acta Mater.
124
,
343
(
2017
).
40.
K.
Miyoshi
and
D. H.
Buckley
,
Wear
77
,
253
(
1982
).
41.
D. H.
Buckley
and
R. L.
Johnson
, NASA—TN D-2513,
1964
.
You do not currently have access to this content.