Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required to avoid brittle fracture. Here, the authors demonstrate a strategy for simultaneously enhancing both hardness and ductility of ZrB2-rich thin films grown in pure Ar on Al2O3(0001) and Si(001) substrates at 475 °C. ZrB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a ZrB2 target, while Zr1−xTaxBy alloy films are grown, thus varying the B/metal ratio as a function of x, by adding pulsed high-power impulse magnetron sputtering (HiPIMS) from a Ta target to deposit Zr1−xTaxBy alloy films using hybrid Ta-HiPIMS/ZrB2-DCMS sputtering with a substrate bias synchronized to the metal-rich portion of each HiPIMS pulse. The average power PTa (and pulse frequency) applied to the HiPIMS Ta target is varied from 0 to 1800 W (0 to 300 Hz) in increments of 600 W (100 Hz). The resulting boron-to-metal ratio, y = B/(Zr+Ta), in as-deposited Zr1−xTaxBy films decreases from 2.4 to 1.5 as PTa is increased from 0 to 1800 W, while x increases from 0 to 0.3. A combination of x-ray diffraction (XRD), glancing-angle XRD, transmission electron microscopy (TEM), analytical Z-contrast scanning TEM, electron energy-loss spectroscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and atom-probe tomography reveals that all films have the hexagonal AlB2 crystal structure with a columnar nanostructure, in which the column boundaries of layers with 0 ≤ x < 0.2 are B-rich, whereas those with x ≥ 0.2 are Ta-rich. The nanostructural transition, combined with changes in average column widths, results in an ∼20% increase in hardness, from 35 to 42 GPa, with a simultaneous increase of ∼30% in nanoindentation toughness, from 4.0 to 5.2 MPa√m.

1.
G.
Hakansson
,
J. E.
Sundgren
,
D.
McIntyre
,
J. E.
Greene
, and
W. D.
Munz
,
Thin Solid Films
153
,
55
(
1987
).
2.
U.
Helmersson
,
S.
Todorova
,
S. A.
Barnett
,
J. E.
Sundgren
,
L. C.
Markert
, and
J. E.
Greene
,
J. Appl. Phys.
62
,
481
(
1987
).
3.
J. E.
Sundgren
,
J.
Birch
,
G.
Håkansson
,
L.
Hultman
, and
U.
Helmersson
,
Thin Solid Films
193
,
818
(
1990
).
4.
C. S.
Shin
,
D.
Gall
,
N.
Hellgren
,
J.
Patscheider
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
93
,
6025
(
2003
).
5.
T.
Lee
,
K.
Ohmori
,
C. S.
Shin
,
D. G.
Cahill
,
I.
Petrov
, and
J. E.
Greene
,
Phys. Rev. B
71
,
144106
(
2005
).
6.
M.
Bereznai
 et al,
Thin Solid Films
473
,
16
(
2005
).
7.
P.
Hedenqvist
,
M.
Bromark
,
M.
Olsson
,
S.
Hogmark
, and
E.
Bergmann
,
Surf. Coat. Technol.
63
,
115
(
1994
).
8.
T.
Polcar
,
T.
Kubart
,
R.
Novák
,
L.
Kopecký
, and
P.
Široký
,
Surf. Coat. Technol.
193
,
192
(
2005
).
9.
D.
McIntyre
,
J. E.
Greene
,
G.
Håkansson
,
J. E.
Sundgren
, and
W. D.
Münz
,
J. Appl. Phys.
67
,
1542
(
1990
).
10.
L. A.
Donohue
,
I. J.
Smith
,
W.-D.
Münz
,
I.
Petrov
, and
J. E.
Greene
,
Surf. Coat. Technol.
94
,
226
(
1997
).
11.
J. C.
Sánchez-López
,
D.
Martínez-Martínez
,
C.
López-Cartes
,
A.
Fernández
,
M.
Brizuela
,
A.
García-Luis
, and
J. I.
Oñate
,
J. Vac. Sci. Technol.
23
,
681
(
2005
).
12.
C.
Hu
,
Y.
Tian
, and
W.
Zheng
,
Innovations Corrosion Mater. Sci.
5
,
2
(
2015
).
13.
D.
Gall
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
89
,
401
(
2001
).
14.
A. B.
Mei
,
B. M.
Howe
,
C.
Zhang
,
M.
Sardela
,
J. N.
Eckstein
,
L.
Hultman
,
A.
Rockett
,
I.
Petrov
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
31
,
061516
(
2013
).
15.
A. B.
Mei
,
A.
Rockett
,
L.
Hultman
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
114
,
193708
(
2013
).
16.
A. B.
Mei
,
M.
Tuteja
,
D. G.
Sangiovanni
,
R. T.
Haasch
,
A.
Rockett
,
L.
Hultman
,
I.
Petrov
, and
J. E.
Greene
,
J. Mater. Chem. C
4
,
7924
(
2016
).
17.
Q.
Zheng
,
A. B.
Mei
,
M.
Tuteja
,
D. G.
Sangiovanni
,
L.
Hultman
,
I.
Petrov
,
J. E.
Greene
, and
D. G.
Cahill
,
Phys. Rev. Mater.
1
,
065002
(
2017
).
18.
Q.
Gu
,
G.
Krauss
, and
W.
Steurer
,
Adv. Mater.
20
,
3620
(
2008
).
19.
A. A.
Goncharov
,
S. N.
Dub
,
A. V.
Agulov
, and
V. V.
Petukhov
,
J. Superhard Mater.
37
,
422
(
2015
).
20.
A. I.
Bazhin
,
A. A.
Goncharov
,
A. D.
Pogrebnyak
,
V. A.
Stupak
, and
S. A.
Goncharova
,
Phys. Met. Metallogr.
117
,
594
(
2016
).
21.
V.
Moraes
,
H.
Riedl
,
C.
Fuger
,
P.
Polcik
,
H.
Bolvardi
,
D.
Holec
, and
P. H.
Mayrhofer
,
Sci. Rep.
8
,
9288
(
2018
).
22.
Y.
Murata
, U.S. patent 3,487,594 (6 January 1970)
23.
M.
Zhou
,
M.
Nose
,
Y.
Makino
, and
K.
Nogi
,
Thin Solid Films
343
,
234
(
1999
).
24.
R.
Telle
,
L. S.
Sigl
, and
K.
Takagi
, “
Boride-based hard materials
,” in
Handbook of Ceramic Hard Materials
, edited by
R.
Riedel
(WILEY-VCH Verlag GmbH, D-69469 Weinheim, Germany,
2008
), pp.
802
945
.
26.
L. A.
Friedrich
, NASA Technical Report Server, 19810022661 (1981)
27.
J. D.
Kellner
,
W. J.
Crof
, and
L. A.
Shepard
, Titanium Diboride Electrodeposited Coatings, Defense Technical Information Center, ADA047956 (1997).
28.
B. R.
Golla
,
T.
Bhandari
,
A.
Mukhopadhyay
, and
B.
Basu
, “
Titanium diboride
,” in
Ultra-High Temperature Ceramics Materials for Extreme Environment Applications
, edited by
W. G.
Fahrenholtz
,
E. J.
Wuchina
,
W. E.
Lee
, and
Y.
Zhou
(
Wiley
,
Hoboken
,
NJ
,
2014
), pp.
316
360
.
29.
G.
Sade
and
J.
Pelleg
,
Appl. Surf. Sci.
91
,
263
(
1995
).
30.
M.
Guziewicz
,
A.
Piotrowska
,
E.
Kamińska
,
K.
Gołaszewska
,
A.
Turos
,
E.
Mizera
,
A.
Winiarski
, and
J.
Szade
,
Solid State Electron.
43
,
1055
(
1999
).
31.
J.
Sung
,
D. M.
Goedde
,
G. S.
Girolami
, and
J. R.
Abelson
,
J. Appl. Phys.
91
,
3904
(
2002
).
32.
W. J.
Clegg
,
Science
286
,
1097
(
1999
).
33.
F.
Kunc
,
J.
Musil
,
P. H.
Mayrhofer
, and
C.
Mitterer
,
Surf. Coat. Technol.
174
,
744
(
2003
).
34.
N.
Nedfors
,
A.
Mockute
,
J.
Palisaitis
,
P. O. Å.
Persson
,
L. Å.
Näslund
, and
J.
Rosén
,
Surf. Coat. Technol.
304
,
203
(
2016
).
35.
J.
Neidhardt
,
S.
Mráz
,
J. M.
Schneider
,
E.
Strub
,
W.
Bohne
,
B.
Liedke
,
W.
Möller
, and
C.
Mitterer
,
J. Appl. Phys.
104
,
063304
(
2008
).
36.
M.
Berger
,
M.
Larsson
, and
S.
Hogmark
,
Surf. Coat. Technol.
124
,
253
(
2000
).
37.
I.
Petrov
 et al,
J. Vac. Sci. Technol. A
35
,
050601
(
2017
).
38.
B.
Bakhit
,
I.
Petrov
,
J. E.
Greene
,
L.
Hultman
,
J.
Rosén
, and
G.
Greczynski
,
J. Vac. Sci. Technol. A
36
,
030604
(
2018
).
39.
J.
Reader
and
C. H.
Corliss
, “
Atomic, molecular, and optical physics; ionization potentials of atoms and atomic ions
,” in
CRC Handbook of Chemistry and Physics
, 84th ed., edited by
D. R.
Lide
(
CRC
,
Boca Raton
,
FL
,
2003
), Section 10.
40.
M. A.
Lennon
,
K. L.
Bell
,
H. B.
Gilbody
,
J. G.
Hughes
,
A. E.
Kingston
,
M. J.
Murray
, and
F. J.
Smith
,
J. Phys. Chem. Ref. Data
17
,
1285
(
1988
).
41.
JCPDS International Centre for Diffraction Data
, Zirconium diboride (ZrB2) card 00-034-0423.
42.
J. E.
Sundgren
,
B. O.
Johansson
,
A.
Rockett
,
S. A.
Barnett
, and
J. E.
Greene
, “TiN: A review of the present understanding of the atomic and electronic structure and recent results on the growth and physical properties of epitaxial TiNx (0.6 < x < .12) layers,” in Physics and Chemistry of Protective Coatings, Series 149, edited by W. D. Sproul, J. E. Greene, and J. A. Thornton (American Institute of Physics, New York, 1986), p. 95.
43.
L. E.
Toth
,
Transition Metal Carbides and Nitrides
, 1st ed. (
Academic
,
San Diego
,
CA
,
1971
), pp.
69
101
.
44.
T.
Lundström
, “
Transition metal borides
,” in
Boron and Refractory Borides
, edited by
V. I.
Matkovich
(
Springer-Verlag
,
Heidelberg
,
Germany
,
1977
), pp.
351
376
.
45.
A. E.
McHale
,
Data Collected from Phase Diagrams for Ceramists
(
American Ceramic Society
,
Westerville
,
OH
,
1994
), Vol. X.
46.
L.
Bsenko
and
T.
Lundström
,
J. Less-Common Met.
34
,
273
(
1974
).
47.
D. L.
Smith
,
Thin Film Deposition Principles and Practice
(
McGraw-Hill
,
New York
,
1995
), p.
142
.
48.
C.
Mitterer
,
P.
Losbichler
,
W. S. M.
Werner
,
H.
Störi
, and
J.
Barounig
,
Surf. Coat. Technol.
54
,
329
(
1992
).
49.
W. G.
Fahrenholtz
,
G. E.
Hilmas
,
I. G.
Talmy
, and
J. A.
Zaykoski
,
J. Am. Ceram. Soc.
90
,
1347
(
2007
).
50.
J. V.
Rau
,
D.
Ferro
,
M. B.
Falcone
,
A.
Generosi
,
V. R.
Albertini
,
A.
Latini
,
R.
Teghil
, and
S. M.
Barinov
,
Mater. Chem. Phys.
112
,
504
(
2008
).
51.
L.
Tengdelius
,
E.
Broitman
,
J.
Lu
,
F.
Eriksson
,
J.
Birch
,
T.
Nyberg
,
L.
Hultman
, and
H.
Högberg
,
Acta Mater.
111
,
166
(
2016
).
52.
G.
Greczynski
,
J.
Lu
,
M. P.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Coat. Technol.
206
,
4202
(
2012
).
53.
G.
Greczynski
,
J.
Lu
,
M.
Johansson
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Vacuum
86
,
1036
(
2012
).
54.
G.
Greczynski
,
J.
Lu
,
S.
Bolz
,
W.
Kölker
,
C.
Schiffers
,
O.
Lemmer
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
32
,
41515
(
2014
).
55.
G.
Greczynski
 et al,
J. Vac. Sci. Technol. A
30
,
061504
(
2012
).
57.
Thermocouple calibrations are confirmed using boiling water; the maximum allowable deviation is ± 2 °C.
58.
G.
Greczynski
and
L.
Hultman
,
Vacuum
84
,
1159
(
2010
).
59.
G. G.
Stoney
,
Proc. R. Soc. Ser. A
82
,
172
(
1909
).
60.
G. C. A. M.
Janssen
,
M. M.
Abdalla
,
F. V.
Keulen
,
B. R.
Pujada
, and
B. V.
Venrooy
,
Thin Solid Films
517
,
1858
(
2009
).
61.
S.
Hearne
,
E.
Chason
,
J.
Han
,
J. A.
Floro
,
J.
Figiel
,
J.
Hunter
,
H.
Amano
, and
I. S. T.
Tsong
,
Appl. Phys. Lett.
74
,
356
(
1999
).
62.
M.
Ohring
,
Materials Science of Thin Films
, 2nd ed. (
Academic
,
New York
,
2001
), pp.
1
55
.
63.
E. R.
Dobrovinskaya
,
L. A.
Lytvynov
, and
V.
Pishchik
,
Sapphire Material, Manufacturing, Applications
(
Springer
,
NY
,
2009
), pp.
55
153
.
64.
W. A.
Paxton
,
T. E.
Özdemir
,
İ
Şavklıyıldız
,
T.
Whalen
,
H.
Biçer
,
E. K.
Akdoğan
,
Z.
Zhong
, and
T.
Tsakalakos
,
J. Ceramics
2016
,
8346563
(
2016
).
65.
H.
Warlimont
, “Ceramics,” in Springer Handbook of Condensed Matter and Materials Data, edited by W. Martienssen and H. Warlimont (Springer, Switzerland, 2005), p. 454, Chap. 17.
66.
G.
Greczynski
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
33
,
05E101
(
2015
).
67.
ISO 15472:2010, “Surface chemical analysis—X-ray photoelectron spectrometers—Calibration of energy scales” (ISO, Geneva, 2010).
68.
G.
Greczynski
and
L.
Hultman
,
Chem. Phys. Chem.
18
,
1507
(
2017
).
69.
K.
Thompson
,
D.
Lawrence
,
D. J.
Larson
,
J. D.
Olson
,
T. F.
Kelly
, and
B.
Gorman
,
Ultramicroscopy
107
,
131
(
2007
).
70.
K.
Thompson
,
B.
Gorman
,
D.
Larson
,
B. V.
Leer
, and
L.
Hong
,
Microsc. Microanal.
12
,
1736
(
2006
).
71.
B. P.
Geiser
,
D. J.
Larson
,
E.
Oltman
,
S.
Gerstl
,
D.
Reinhard
,
T. F.
Kelly
, and
T. J.
Prosa
,
Microsc. Microanal.
15
,
292
(
2009
).
72.
H.
Ljungcrantz
,
M.
Odén
,
L.
Hultman
,
J. E.
Greene
, and
J. E.
Sundgren
,
J. Appl. Phys.
80
,
6725
(
1996
).
73.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
74.
N. L.
Okamoto
,
M.
Kusakari
,
K.
Tanaka
,
H.
Inui
,
M.
Yamaguchi
, and
S.
Otani
,
J. Appl. Phys.
93
,
88
(
2003
).
75.
W. J.
Zhao
and
Y. X.
Wang
,
J. Solid State Chem.
182
,
2880
(
2009
).
76.
J. D.
Zhang
,
X. L.
Cheng
, and
D. H.
Li
,
Comput. Mater. Sci.
50
,
474
(
2010
).
77.
B. R.
Lawn
,
A. G.
Evans
, and
D. B.
Marshall
,
J. Am. Ceram. Soc.
63
,
574
(
1980
).
78.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
6
,
19
(
1988
).
79.
D. W.
Hoffman
,
J. Vac. Sci. Technol. A
3
,
561
(
1985
).
80.
G.
Greczynski
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Vacuum
116
,
36
(
2015
).
81.
JCPDS International Centre for Diffraction Data, Tantalum diboride (TaB2) card 00-038-1462.
82.
P.
Zaumseil
,
J. Appl. Crystallogr.
48
,
528
(
2015
).
83.
L.
Pauling
,
J. Am. Chem. Soc.
69
,
542
(
1947
).
84.
B.
Post
,
F. W.
Glaser
, and
D.
Moskowitz
,
Acta Metallur.
2
,
20
(
1954
).
85.
H. R.
Moutinho
,
F. S.
Hasoon
,
F.
Abulfotuh
, and
L. L.
Kazmerski
,
J. Vac. Sci. Technol. A
13
,
2877
(
1998
).
86.
P. H.
Mayrhofer
,
C.
Mitterer
,
J. G.
Wen
,
J. E.
Greene
, and
I.
Petrov
,
Appl. Phys. Lett.
86
,
131909
(
2005
).
87.
M. K.
Miller
and
M. G.
Hetherington
,
Surf. Sci.
246
,
442
(
1991
).
88.
D. A.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).
89.
N.
Fairley
, “
XPS lineshapes and curve fitting
,” in
Surface Analysis by Auger and X-ray Photoelectron Spectroscopy
, edited by
D.
Briggs
and
J. T.
Grant
(
IM Publications
,
Manchester
,
2003
), pp.
397
420
.
90.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin-Elmer
,
Eden Prairie
,
USA
,
1992
), p.
109
.
91.
L.
Tengdelius
,
G.
Greczynski
,
M.
Chubarov
,
J.
Lu
,
U.
Forsberg
,
L.
Hultman
,
E.
Janzén
, and
H.
Högberg
,
J. Cryst. Growth
430
,
55
(
2015
).
92.
J.
Musil
,
Surf. Coat. Technol.
207
,
50
(
2012
).
93.
A.
Leyland
and
A.
Matthews
,
Wear
246
,
1
(
2000
).
94.
G. M.
Pharr
,
D. S.
Harding
, and
W. C.
Oliver
, “Measurement of fracture toughness in thin films and small volumes using nanoindentation methods,” in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, NATO ASI Series, Series E Applied Sciences, 233, edited by M. Nastasi, D. M. Parkin, and H. Gleiter (Springer, Netherlands, 1993), pp. 449–461.
95.
G. R.
Anstis
,
P.
Chantikul
,
B. R.
Lawn
, and
D. B.
Marshall
,
J. Am. Ceram. Soc.
64
,
533
(
1981
).
96.
Y. X.
Wang
,
S.
Zhang
,
J. W.
Lee
,
W. S.
Lew
, and
B.
Li
,
Surf. Coat. Technol.
206
,
5103
(
2012
).
97.
Y. H.
Chen
,
J. J.
Roa
,
C. H.
Yu
,
M. P.
Johansson-Jõesaar
,
J. M.
Andersson
,
M. J.
Anglada
,
M.
Odén
, and
L.
Rogström
,
Surf. Coat. Technol.
342
,
85
(
2018
).
98.
P.
Panjan
,
M.
Cekada
, and
B.
Navinsek
,
Surf. Coat. Technol.
174
,
55
(
2003
).
99.
H.
Kindlund
,
D. G.
Sangiovanni
,
J.
Lu
,
J.
Jensen
,
V.
Chirita
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
32
,
030603
(
2014
).
100.
H.
Kindlund
,
D. G.
Sangiovanni
,
J.
Lu
,
J.
Jensen
,
V.
Chirita
,
J.
Birch
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Acta Mater.
77
,
394
(
2014
).
101.
Y. X.
Wang
and
S.
Zhang
,
Surf. Coat. Technol.
258
,
1
(
2014
).
102.
R. O.
Ritchie
,
Nat. Mater.
10
,
817
(
2011
).
103.
S. M.
Wiederhorn
,
Annu. Rev. Mater. Sci.
14
,
373
(
1984
).
104.
D.
Gall
,
R. T.
Haasch
,
N.
Finnegan
,
T. Y.
Lee
,
C. S.
Shin
,
E.
Sammann
,
J. E.
Greene
, and
I.
Petrov
,
Surf. Sci. Spect.
7
,
167
(
2000
).
105.
M.
Nastasi
,
J. W.
Mayer
, and
Y.
Wang
,
Ion Beam Analysis: Fundamentals and Applications
, 1st ed. (
Taylor & Francis
,
Boca Raton
,
2014
), pp.
9
24
.
106.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, Nucl. Instrum. Methods B 268, 1818 (2010); the authors used SRIM-2013, available from www.SRIM.org.
107.
See: http://www.crct.polymtl.ca/fact/documentation/menu.php?SpMCBN = 1 (Facility for the Analysis of Chemical Thermodynamics).
108.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
).
109.
A. L.
Chamberlain
,
W. G.
Fahrenholtz
,
G. E.
Hilmas
, and
D. T.
Ellerby
,
J. Am. Ceram. Soc.
87
,
1170
(
2004
).
110.
R. A.
Cutler
, “Engineering properties of borides,” in Engineered Materials Handbook Volume 4 Ceramics and Glasses, edited by S. J. Schneider (ASM International, Materials Park, OH, 1991).
111.
G. E.
Dieter
,
Mechanical Metallurgy
, 3rd ed. (
Mc Graw-Hill Book Co.
,
New York
,
1986
), pp.
128
132
.
112.
E. O.
Hall
,
Proc. Phys. Soc. B
64
,
747
(
1951
).
113.
N. J.
Petch
,
J. Iron Steel Inst.
174
,
25
(
1953
).
You do not currently have access to this content.