Indium tantalum oxide thin film was deposited by sputtering using three different designs: 5–7 and 10–14 nm alternative layers of Ta2O5 and In2O3 and co-sputtering of In2O3 and Ta2O5. Then, as-deposited films were rapidly annealed at different temperatures to assess the thermal effects on microstructures and photocatalytic functions. Results from XRD and energy-dispersive x-ray spectrometer indicate that crystalline InTaO4 emerges in 5–7 and 10–14 nm stacks of films but absent in the co-sputtered films. Since crystalline InTaO4 is capable of photocatalysis under both ultraviolet and visible light, the authors particularly tested the annealed films in water to degrade methylene blue under visible light. The photo-induced degradation on methylene blue by 5–7 and 10–14 nm stacks can reach 45% after 6-h continuous exposure. Using UV-Visible-Near Infrared spectroscopy, the authors can estimate the optical bandgaps in these annealed films and from these estimations, a mechanism for the photocatalysis is discussed. This mechanism is similar to the other electron-hole separation and transfer across the heterogeneous junctions in semiconductors.

1.
Z. G.
Zou
,
J. H.
Ye
, and
H.
Arakawa
,
Chem. Phys. Lett.
332
,
271
(
2000
).
2.
Z. G.
Zou
,
J. H.
Ye
, and
H.
Arakawa
,
Mater. Res. Bull.
36
,
1185
(
2001
).
3.
M.
Pelaez
 et al.,
Appl. Catal. B
125
,
331
(
2012
).
4.
P.
Evans
and
D. W.
Sheel
,
Surf. Coat. Technol.
201
,
9319
(
2007
).
5.
W. S.
Kou
and
P. H.
Ho
,
Chemosphere
45
,
77
(
2001
).
6.
N.
Getoff
,
Proc. Indian Acad. Sci. (Chem. Sci.)
105
,
373
(
1993
).
7.
H.
Hidaka
,
Proc. Indian Acad. Sci. (Chem. Sci.)
110
,
215
(
1998
).
8.
X. Z.
Li
,
F. B.
Li
,
C. L.
Yang
, and
W. K.
Ge
,
J. Photochem. Photobiol. A
141
,
209
(
2001
).
9.
S. D.
Sharma
,
K. K.
Saini
,
C.
Kant
,
C. P.
Sharma
, and
S. C.
Jain
,
Appl. Catal. B
84
,
233
(
2008
).
10.
T.
Lindgren
,
J. M.
Mwabora
,
E.
Avendaño
,
J.
Jonsson
,
A.
Hoel
,
C.-G.
Granqvist
, and
S.-E.
Lindquist
,
J. Phys. Chem. B
107
,
5709
(
2003
).
11.
L.
Wan
,
J. F.
Li
,
J. Y.
Feng
,
W.
Sun
, and
Z. Q.
Mao
,
Mater. Sci. Eng. B
139
,
216
(
2007
).
12.
Z. G.
Zou
,
J. H.
Ye
,
K.
Sayama
, and
H.
Arakawa
,
Nature
414
,
625
(
2001
).
13.
J.
Ye
,
Z.
Zou
,
H.
Arakawa
,
M.
Oshikiri
,
M.
Shimoda
,
A.
Matsushita
, and
T.
Shishido
,
J. Photochem. Photobiol. A
148
,
79
(
2002
).
14.
R.
Ullah
,
H. Q.
Sun
,
H. M.
Ang
,
M. O.
Tade
, and
S. B.
Wang
,
Sep. Purif. Technol.
89
,
98
(
2012
).
15.
Z. Y.
Wang
,
H. C.
Chou
,
J. C. S.
Wu
,
D. P.
Tsai
, and
G.
Mul
,
Appl. Catal. A
380
,
172
(
2010
).
16.
C. W.
Tsai
,
H. M.
Chen
,
R. S.
Liu
,
K.
Asakura
, and
T. S.
Chan
,
J. Phys. Chem. C
115
,
10180
(
2011
).
17.
G. L.
Li
and
Z.
Yin
,
Phys. Chem. Chem. Phys.
13
,
2824
(
2011
).
18.
Z.
Zou
,
J.
Ye
, and
H.
Arakawa
,
Catal. Lett.
75
,
209
(
2001
).
19.
O.
Harneit
and
H.
Müller-Buschbaum
,
J. Alloys Compd.
194
,
101
(
1993
).
20.
A.
Abrutis
,
L.
Parafianovic
,
V.
Kazlauskiene
,
V.
Kubilius
,
G.
Sauthier
, and
A.
Figueras
,
Surf. Coat. Technol.
204
,
3864
(
2010
).
21.
V.
Rico
,
C.
Lopez
,
A.
Borras
,
J. P.
Espinos
, and
A. R.
Gonzalez-Elipe
,
Sol. Energy Mater. Sol. Cells
90
,
2944
(
2006
).
22.
T.
Yoshida
,
H.
Toyoyama
,
I.
Umezu
, and
A.
Sugimura
,
Appl. Phys. A
93
,
961
(
2008
).
23.
H. C.
Chen
,
H. C.
Chou
,
J. C. S.
Wu
, and
H. Y.
Lin
,
J. Mater. Res.
23
,
1364
(
2008
).
24.
Y. C.
Chiou
,
U.
Kumar
, and
J. C. S.
Wu
,
Appl. Catal. A
357
,
73
(
2009
).
25.
K.
Maruta
,
H.
Kawakami
, and
K.
Maki
,
Jpn. J. Appl. Phys. Part 1
46
,
774
(
2007
).
26.
H.
Kawakami
and
K.
Maki
,
Vacuum
82
,
95
(
2007
).
27.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
,
Phys. Status Solidi.
15
,
627
(
1966
).
29.
H.
Tang
,
K.
Prasad
,
R.
Sanjines
,
P. E.
Schmid
, and
F.
Levy
,
J. Appl. Phys.
75
,
2042
(
1994
).
30.
M. M.
Rahman
,
K. M.
Krishna
,
T.
Soga
,
T.
Jimba
, and
M.
Umeno
,
J. Phys. Chem. Solids
60
,
201
(
1999
).
31.
P.
Sharma
,
M.
Vashistha
, and
I. P.
Jain
,
Optoelectron. Adv. Mater.
7
,
2647
(
2005
).
32.
J.
Yu
,
J.
Xiong
,
B.
Cheng
, and
S.
Liu
,
Appl. Catal. B
60
,
211
(
2005
).
33.
J. R.
Bellingham
,
W. A.
Phillips
, and
C. J.
Adkins
,
J. Phys. Condens. Matter
2
,
6207
(
1990
).
34.
J. M.
Heintz
,
J. J. M.
Besson
,
L.
Rabardel
, and
J. P.
Bonnet
,
Ceram. Int.
18
,
263
(
1992
).
35.
K. H.
Min
,
R.
Sinclair
,
I. S.
Park
,
S. T.
Kim
, and
U. I.
Chung
,
Philos. Mag.
85
,
2049
(
2005
).
36.
F. O.
Adurodija
,
L.
Semple
, and
R.
Bruning
,
J. Mater. Sci.
41
,
7096
(
2006
).
37.
E. H. P.
Cordfunke
,
R. J. M.
Konings
, and
W.
Ouweltjes
,
J. Chem. Thermodyn.
23
,
451
(
1991
).
38.
K. T.
Jacob
,
C.
Shekhar
, and
Y.
Waseda
,
J. Chem. Thermodyn.
41
,
748
(
2009
).
39.
M.
Miyauchi
,
A.
Nakajima
,
T.
Watanabe
, and
K.
Hashimoto
,
Chem. Mater.
14
,
2812
(
2002
).
40.
M.
Miyauchi
,
N.
Kieda
,
S.
Hishita
,
T.
Mitsuhashi
,
A.
Nakajima
,
T.
Watanabe
, and
K.
Hashimoto
,
Surf. Sci.
511
,
401
(
2002
).
41.
N.
Sakai
,
A.
Fujishima
,
T.
Watanabe
, and
K.
Hashimoto
,
J. Phys. Chem. B
105
,
3023
(
2001
).
42.
R.
Ullah
,
H. Q.
Sun
,
S. B.
Wang
,
H. M.
Ang
, and
M. O.
Tade
,
Ind. Eng. Chem. Res.
51
,
1563
(
2012
).
You do not currently have access to this content.