Oxide multilayer heteroepitaxy combining Mott-insulator vanadium dioxide (VO2) films and functional conducting/ferroelectric/dielectric films opens new opportunities in creating functional devices with applicability in the field of nonvolatile memories for neuromorphic devices. The growth of high quality VO2 films is challenging due to the necessity of precise control of the vanadium cation valence state. In this study, the authors report on electrical and structural properties of VO2 thin films deposited on various single crystal oxide substrates commonly used in oxide electronics and on PbZrxTi(1−x)O3/SrRuO3 ferroelectric heterostructures deposited on SrTiO3 and GaScO3 single crystal substrates. The optimized VO2 films exhibit a metal-to-insulator phase transition on all applied substrate/film combinations.

1.
C.
Berglund
and
H.
Guggenhe
,
Phys. Rev.
185
,
1022
(
1969
).
2.
F.
Morin
,
Phys. Rev. Lett.
3
,
34
(
1959
).
3.
J. B.
Goodenough
,
J. Solid State Chem.
3
,
490
(
1971
).
4.
A. S.
Barker
,
H. W.
Verleur
, and
H. J.
Guggenheim
,
Phys. Rev. Lett.
17
,
1286
(
1966
).
5.
L. L.
Ladd
and
W.
Paul
,
Solid State Commun.
7
,
425
(
1969
).
6.
M.
Rini
 et al,
Appl. Phys. Lett.
92
,
181904
(
2008
).
7.
R. M.
Wentzcovitch
,
W. W.
Schulz
, and
P. B.
Allen
,
Phys. Rev. Lett.
72
,
3389
(
1994
).
8.
T. M.
Rice
,
H.
Launois
, and
J. P.
Pouget
,
Phys. Rev. Lett.
73
,
3042
(
1994
).
9.
M. M.
Qazilbash
 et al,
Science
318
,
1750
(
2007
).
10.
S.
Biermann
,
A.
Poteryaev
,
A. I.
Lichtenstein
, and
A.
Georges
,
Phys. Rev. Lett.
94
,
026404
(
2005
).
11.
K.
Shibuya
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
96
,
022102
(
2010
).
12.
P.
Jin
and
S.
Tanemura
,
Jpn. J. Appl. Phys.
34
,
2459
(
1995
).
13.
A.
Petraru
,
R.
Soni
, and
H.
Kohlstedt
,
Appl. Phys. Lett.
105
,
092902
(
2014
).
14.
Y.
Muraoka
and
Z.
Hiroi
,
Appl. Phys. Lett.
80
,
583
(
2002
).
15.
H.
Koo
,
S.
Yoon
,
O.-J.
Kwon
,
K.-E.
Ko
,
D.
Shin
,
S.-H.
Bae
,
S.-H.
Chang
, and
C.
Park
,
J. Mater. Sci.
47
,
6397
(
2012
).
16.
N.
Aetukuri
 et al,
Nat. Phys.
9
,
661
(
2013
).
17.
T.
Kikuzuki
,
R.
Takahashi
, and
M.
Lippmaa
,
Phys. Rev. B
82
,
144113
(
2010
).
18.
V. R.
Morrison
,
R. P.
Chatelain
,
K. L.
Tiwari
,
A.
Hendaoui
,
A.
Bruháacs
,
M.
Chaker
, and
B. J.
Siwick
,
Science
346
,
445
(
2014
).
19.
K.
Shibuya
 et al,
Phys. Rev. B
84
,
165108
(
2011
).
20.
T.
Nan
,
M.
Liu
,
W.
Ren
,
Z.-G.
Ye
, and
N. X.
Sun
,
Sci. Rep.
4
,
5931
(
2014
).
21.
B. W.
Zhi
,
G. Y.
Gao
,
H. R.
Xu
,
F.
Chen
,
X. L.
Tan
,
P. F.
Chen
,
L. F.
Wang
, and
W. B.
Wu
,
ACS Appl. Mater. Interfaces
6
,
4603
(
2014
).
22.
Y.
Zhou
and
S.
Ramanathan
,
Proc. IEEE
103
,
1289
(
2015
).
23.
M.
Ignatov
,
M.
Ziegler
,
M.
Hansen
,
A.
Petraru
, and
H.
Kohlstedt
,
Front. Neurosci.
9
,
376
(
2015
).
24.
T.
Driscoll
 et al,
Science
325
,
1518
(
2009
).
25.
T.
Driscoll
,
H. T.
Kim
,
B. G.
Chae
,
M.
Di Ventra
, and
D. N.
Basov
,
Appl. Phys. Lett.
95
,
043503
(
2009
).
26.
M.
Nakano
,
K.
Shibuya
,
D.
Okuyama
,
T.
Hatano
,
S.
Ono
,
M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
,
Nature
487
,
459
(
2012
).
27.
J.
Jeong
,
N.
Aetukuri
,
T.
Graf
,
T. D.
Schladt
,
M. G.
Samant
, and
S. S. P.
Parkin
,
Science
339
,
1402
(
2013
).
28.
J.
Karel
 et al,
ACS Nano
8
,
5784
(
2014
).
29.
G.
Andersson
,
Acta Chim. Scand.
10
,
623
(
1956
).
30.
A. A.
Bolzan
,
C.
Fong
,
B. J.
Kennedy
, and
C. J.
Howard
,
Acta Crystallogr. Sect. B
53
,
373
(
1997
).
31.
P.
Schilbe
,
Phys. B Condens. Matter
316–317
,
600
(
2002
).
32.
J.
Parker
,
Phys. Rev. B
42
,
3164
(
1990
).
33.
F.
Urea-Begara
,
A.
Crunteanu
, and
J.-P.
Raskin
,
Appl. Surf. Sci.
403
,
717
(
2017
).
34.
M.
Zaghrioui
,
J.
Sakai
,
N. H.
Azhan
,
K.
Su
, and
K.
Okimura
,
Vibr. Spectrosc.
80
,
79
(
2015
).
35.
C.
Marini
 et al,
Phys. Rev. B
77
,
235111
(
2008
).
36.
B. Y.
Qu
,
H. Y.
He
, and
B. C.
Pan
,
J. Appl. Phys.
110
,
113517
(
2011
).
You do not currently have access to this content.