Epitaxially strained La1+δCrO3 (LCO) thin films, with δ ranging between −0.25 (Cr-rich) and 0.25 (La-rich), were grown on SrTiO3(001) substrates by solid-source molecular beam epitaxy. The effect of the cationic-stoichiometry deviation (δ) on the structural properties (surface structure, morphology, terminations, and unit-cell parameters) is reported. Whereas deviation from stoichiometry does not significantly affect the structural quality (all films keep a perovskite structure, are epitaxial, atomically flat, fully strained, and present mosaicity below 0.1°); increasing |δ| leads to an increase of the out-of-plane lattice parameter and of the unit-cell volume. These results are of importance for further studies on structure–property relationships in the view to build enhanced LCO-based devices.

1.
Thin Films and Heterostructures for Oxide Electronics
, edited by
S. B.
Ogale
(
Springer
,
New York
,
2005
).
2.
Functional Oxides
, edited by
D. W.
Bruce
,
D.
O’Hare
, and
R. I.
Walton
(
Wiley
,
Padstow
,
2010
).
3.
I.
Weinberg
and
P.
Larssen
,
Nature
192
,
445
(
1961
).
4.
T.
Arima
,
Y.
Tokura
, and
J. B.
Torrance
,
Phys. Rev. B
48
,
17006
(
1993
).
5.
J.
Yang
,
Acta Crystallogr. Sect. B
64
,
281
(
2008
).
6.
T.
Hashimoto
,
K.
Takagi
,
K.
Tsuda
,
M.
Tanaka
,
K.
Yoshida
,
H.
Tagawa
, and
M.
Dokiya
,
J. Electrochem. Soc.
147
,
4408
(
2000
).
7.
L.
Qiao
,
T. C.
Droubay
,
M. E.
Bowden
,
V.
Shutthanandan
,
T. C.
Kaspar
, and
S. A.
Chambers
,
Appl. Phys. Lett.
99
,
061904
(
2011
).
8.
P.
Duran
,
J.
Tartaj
,
F.
Capel
, and
C.
Moure
,
J. Eur. Ceram. Soc.
24
,
2619
(
2004
).
9.
W. J.
Hu
,
L.
Hu
,
R. H.
Wei
,
X. W.
Tang
,
W. H.
Song
,
J. M.
Dai
,
X. B.
Zhu
, and
Y. P.
Sun
,
Chin. Phys. Lett.
35
,
047301
(
2018
).
10.
X.
Marti
 et al.,
Nat. Mater.
13
,
367
(
2014
).
11.
K.
Rida
,
A.
Benabbas
,
F.
Bouremmad
,
M. A.
Peña
,
E.
Sastre
, and
A.
Martínez-Arias
,
Appl. Catal. B Environ.
84
,
457
(
2008
).
12.
K. A.
Stoerzinger
 et al.,
Adv. Mater. Interfaces
5
,
1701363
(
2018
).
13.
K. H. L.
Zhang
 et al.,
Adv. Mater.
27
,
5191
(
2015
).
14.
J. S.
Zhou
,
J. A.
Alonso
,
A.
Muonz
,
M. T.
Fernández-Díaz
, and
J. B.
Goodenough
,
Phys. Rev. Lett.
106
,
057201
(
2011
).
15.
L.
Qiao
 et al.,
J. Mater. Chem. C
1
,
4527
(
2013
).
16.
R.
Colby
,
L.
Qiao
,
K. H. L.
Zhang
,
V.
Shutthanandan
,
J.
Ciston
,
B.
Kabius
, and
S. A.
Chambers
,
Phys. Rev. B
88
,
155325
(
2013
).
17.
B.
Kim
,
P.
Liu
,
J. M.
Tomczak
, and
C.
Franchini
,
Phys. Rev. B
98
,
075130
(
2018
).
18.
T.
Mayeshiba
and
D.
Morgan
,
Phys. Chem. Chem. Phys.
17
,
2715
(
2014
).
19.
K.
Ueda
,
H.
Tabata
, and
T.
Kawai
,
Science
280
,
1064
(
1998
).
20.
J.
Hong
,
A.
Stroppa
,
J.
Íniguez
,
S.
Picozzi
, and
D.
Vanderbilt
,
Phys. Rev. B
85
,
054417
(
2012
).
21.
R. B.
Comes
 et al.,
Adv. Mater. Interfaces
3
,
1500779
(
2016
).
22.
R. B.
Comes
,
S. R.
Spurgeon
,
D. M.
Kepaptsoglou
,
M. H.
Engelhard
,
D. E.
Perea
,
T. C.
Kaspar
,
Q. M.
Ramasse
,
P. V.
Sushko
, and
S. A.
Chambers
,
Chem. Mater.
29
,
1147
(
2017
).
23.
P. V.
Sushko
,
L.
Qiao
,
M.
Bowden
,
T.
Varga
,
G. J.
Exarhos
,
F. K.
Urban
, III
,
D.
Barton
, and
S. A.
Chambers
,
Phys. Rev. Lett.
110
,
077401
(
2013
).
24.
B.
Tiwari
,
A.
Dixit
,
R.
Naik
,
G.
Lawes
, and
M. S.
Ramachandra Rao
,
Appl. Phys. Lett.
103
,
152906
(
2013
).
25.
L.
Qiao
 et al.,
Adv. Funct. Mater.
23
,
2953
(
2013
).
26.
C. M.
Brooks
,
L. F.
Kourkoutis
,
T.
Heeg
,
J.
Schubert
,
D. A.
Muller
, and
D. G.
Schlom
,
Appl. Phys. Lett.
94
,
162905
(
2009
).
27.
B.
Jalan
,
R.
Engel-Herbert
,
N. J.
Wright
, and
S.
Stemmer
,
J. Vac. Sci. Technol. A
27
,
461
(
2009
).
28.
B.
Jalan
,
P.
Moetakef
, and
S.
Stemmer
,
Appl. Phys. Lett.
95
,
032906
(
2009
).
29.
T.
Ohnishi
,
K.
Shibuya
,
T.
Yamamoto
, and
M.
Lippmaa
,
J. Appl. Phys.
103
,
103703
(
2008
).
30.
E.
Breckenfeld
,
R.
Wilson
,
J.
Karthik
,
A. R.
Damodaran
,
D. G.
Cahill
, and
L. W.
Martin
,
Chem. Mater.
24
,
331
(
2012
).
31.
C. M.
Brooks
,
R. B.
Wilson
,
A.
Schäfer
,
J. A.
Mundy
,
M. E.
Holtz
,
D. A.
Muller
,
J.
Schubert
,
D. G.
Cahill
, and
D. G.
Schlom
,
Appl. Phys. Lett.
107
,
051902
(
2015
).
32.
D. S.
Kan
and
Y.
Shimakawa
,
Appl. Phys. Lett.
99
,
081907
(
2011
).
33.
L.
Qiao
,
T. C.
Droubay
,
T.
Varga
,
M. E.
Bowden
,
V.
Shutthanandan
,
Z.
Zhu
,
T. C.
Kaspar
, and
S. A.
Chambers
,
Phys. Rev. B
83
,
085408
(
2011
).
34.
M. P.
Warusawithana
 et al.,
Nat. Commun.
4
,
2351
(
2013
).
35.
M.
Kawasaki
,
K.
Takahashi
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Ishiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
,
Science
266
,
1540
(
1994
).
36.
G.
Koster
,
B. L.
Kropman
,
G. J. H. M.
Rijnders
,
D. H. A.
Blank
, and
H.
Rogalla
,
Appl. Phys. Lett.
73
,
2920
(
1998
).
37.
R.
García
,
R.
Magerle
, and
R.
Perez
,
Nat. Mater.
6
,
405
(
2007
).
38.
R.
Bachelet
,
F.
Sánchez
,
J.
Santiso
,
C.
Munuera
,
C.
Ocal
, and
J.
Fontcuberta
,
Chem. Mater.
21
,
2494
(
2009
).
39.
R.
Bachelet
,
C.
Ocal
,
L.
Garzón
,
J.
Fontcuberta
, and
F.
Sánchez
,
Appl. Phys. Lett.
99
,
051914
(
2011
).
40.
C.
Ocal
,
R.
Bachelet
,
L.
Garzón
,
M.
Stengel
,
F.
Sánchez
, and
J.
Fontcuberta
,
Chem. Mater.
24
,
4177
(
2012
).
41.
The relative in-plane epitaxial strain (Ɛ) due to the lattice mismatch (f) is defined here as Ɛ = (afilm − abulk)/abulk and f = (asub − abulk)/abulk, where afilm is the measured in-plane lattice parameter of the LCO film, abulk the bulk lattice parameter of pseudocubic LCO, and asub the lattice parameter of the substrate. Please note that Ɛ = f for fully strained epitaxial films (afilm = asub).
42.
See supplementary material at https://doi.org/10.1116/1.5082185 for detailed description and analysis of the MBE fluxes, the RHEED intensity oscillations, the AFM profiles, RBS, XPS, XRR, and XRD results.

Supplementary Material

You do not currently have access to this content.