The authors investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 °C as well as the influence of the sputtering power at 850 °C for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in the angular distribution between C, Si, and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at. % in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by x-ray photoelectron spectroscopy shows C–Ti and Si–C bonding in the Ti3SiC2 films and Si–Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 °C and with the growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 °C. Four-point probe resistivity measurements give values in the range ∼120 to ∼450 μΩ cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.

1.
M. W.
Barsoum
,
Prog. Solid State Chem.
28
,
201
(
2000
).
2.
M. W.
Barsoum
,
MAX Phases: Properties of Machinable Ternary Carbides and Nitrides
(
Wiley-VCH
, Verlag GmbH & Co. KGaA, Weinheim, Germany,
2013
).
3.
P.
Eklund
,
M.
Beckers
,
U.
Jansson
,
H.
Högberg
, and
L.
Hultman
,
Thin Solid Films
518
,
1851
(
2010
).
4.
M. W.
Barsoum
and
M.
Radovic
,
Ann. Rev. Mater. Res.
41
,
195
(
2011
).
5.
M.
Radovic
and
M. W.
Barsoum
,
Am. Ceram. Soc. Bull.
92
,
20
(
2013
).
7.
W.
Jeitschko
and
H.
Nowotny
,
Monatsh. Chem.
98
,
329
(
1967
).
8.
M.
Magnuson
and
M.
Mattesini
,
Thin Solid Films
621
,
108
(
2017
).
9.
P.
Eklund
,
J.
Rosen
, and
P. O. Å.
Persson
,
J. Phys. D Appl. Phys.
50
,
113001
(
2017
).
10.
J. J.
Nickl
,
K. K.
Schweitzer
, and
P.
Luxenberg
,
J. Less Comm. Met.
26
,
335
(
1972
).
11.
T.
Goto
and
T.
Hirai
,
Mater. Res. Bull.
22
,
1195
(
1987
).
12.
C.
Racault
,
F.
Langlais
, and
C. C.
Bernard
,
J. Mater. Sci.
29
,
5023
(
1994
).
13.
E.
Pickering
,
W. J.
Lackey
, and
S.
Crain
,
Chem. Vap. Deposition
6
,
289
(
2000
).
14.
S.
Jacques
,
H.
Fakih
, and
J.-C.
Viala
,
Thin Solid Films
518
,
5071
(
2010
).
15.
S. A.
Kinnunen
,
J.
Malm
,
K.
Arstila
,
M.
Lahtinen
, and
T.
Sajavaara
,
Nucl. Instrum. Methods Phys. Res. Sect. B
406
,
152
(
2017
).
16.
J.-P.
Palmquist
,
U.
Jansson
,
T.
Seppänen
,
P. O. Å.
Persson
,
J.
Birch
,
L.
Hultman
, and
P.
Isberg
,
Appl. Phys. Lett.
81
,
835
(
2002
).
17.
J.-P.
Palmquist
 et al.,
Phys. Rev. B
70
,
165401
(
2004
).
18.
J.
Emmerlich
,
J.-P.
Palmquist
,
H.
Högberg
,
J. M.
Molina-Aldareguia
,
Z.
Czigány
,
S.
Sasvári
,
P. O. Å.
Persson
,
U.
Jansson
, and
L.
Hultman
,
J. Appl. Phys.
96
,
4817
(
2004
).
19.
B.
Holm
,
R. R.
Ahuja
,
S.
Li
, and
B.
Johansson
,
J. Appl. Phys.
91
,
9874
(
2002
).
20.
T. H.
Scabarozi
,
J. D.
Hettinger
,
S. E.
Lofland
,
J.
Lu
,
L.
Hultman
,
J.
Jensen
, and
P.
Eklund
,
Scr. Mater.
65
,
811
(
2011
).
21.
P. V.
Istomin
,
E. I.
Istomina
,
A.
Nadutkin
,
V. E.
Grass
, and
M.
Presniakov
,
Inorg. Chem.
55
,
11050
(
2016
).
22.
P. V.
Istomin
,
E. I.
Istomina
,
A.
Nadutkina
,
V. E.
Grass
,
A.
Leonov
,
M.
Kaplan
, and
M.
Presniakov
,
Ceram. Int.
43
,
16128
(
2017
).
23.
E. I.
Istomina
,
P. V.
Istomin
,
A. V.
Nadutkin
,
V. E.
Grass
, and
A. S.
Bogdanova
,
Inorg. Mater.
54
,
528
(
2018
).
24.
P.
Eklund
,
J.
Emmerlich
,
H.
Högberg
,
O.
Wilhelmsson
,
P.
Isberg
,
J.
Birch
,
P. O. Å.
Persson
,
U.
Jansson
, and
L.
Hultman
,
J. Vac. Sci. Technol. B
23
,
6
(
2005
).
25.
P.
Eklund
,
M.
Beckers
,
J.
Frodelius
,
H.
Högberg
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
25
,
1381
(
2007
).
27.
J.
Alami
,
P.
Eklund
,
J.
Emmerlich
,
O.
Wilhelmsson
,
U.
Jansson
,
H.
Högberg
,
L.
Hultman
, and
U.
Helmersson
,
Thin Solid Films
515
,
1731
(
2006
).
28.
H.
Nowotny
,
Prog. Solid State Chem.
2
,
27
(
1970
).
29.
V.
Vishnyakov
,
J.
Lu
,
P.
Eklund
,
L.
Hultman
, and
J.
Colligon
,
Vacuum
93
,
56
(
2013
).
30.
A. G.
Dirks
,
R. A. M.
Wolters
, and
A. J. M.
Nellissen
,
Thin Solid Films
193–194
,
201
(
1990
).
31.
D. B.
Bergstrom
,
F.
Tian
,
I.
Petrov
,
J.
Moser
, and
J. E.
Greene
,
Appl. Phys. Lett.
67
,
3102
(
1995
).
32.
L. R.
Shaginyan
,
M.
Mišina
,
S.
Kadlec
,
L.
Jastrabík
,
A.
Macková
, and
V.
Peřina
,
J. Vac. Sci. Technol. A
19
,
2554
(
2001
).
33.
J.
Neidhardt
,
S.
Mráz
,
J. M.
Schneider
,
E.
Strub
,
W.
Bohne
,
B.
Liedke
,
W.
Möller
, and
C.
Mitterer
,
J. Appl. Phys.
104
,
063304
(
2008
).
34.
P.
Eklund
,
C.
Virojanadara
,
J.
Emmerlich
,
L. I.
Johansson
,
H.
Högberg
, and
L.
Hultman
,
Phys. Rev. B
74
,
045417
(
2006
).
35.
G.
Greczynski
,
D.
Primetzhofer
, and
L.
Hultman
,
Appl. Surf. Sci.
436
,
102
(
2018
).
36.
CASA XPS, v.2.3.19, see http://www.casaxps.com/.
37.
H. J.
Whitlow
,
G.
Possnert
, and
C. S.
Petersson
,
Nucl. Instrum. Methods Phys. Res. Sect. B
27
,
448
(
1987
).
38.
J.
Jensen
,
D.
Martin
,
A.
Surpi
, and
T.
Kubart
,
Nucl. Instrum. Methods Phys. Res. Sect. B
268
,
1893
(
2010
).
39.
M. S.
Janson
, CONTES (Conversion of Time-Energy Spectra)—A Program for ERDA Data Analysis (
2004
).
40.
T.
Degen
,
M.
Sadki
,
E.
Bron
,
U.
König
, and
G.
Nénert
,
Powder Diffr.
29
,
S13
(
2014
).
41.
J.
Lu
,
X. D.
Gao
,
S. L.
Zhang
, and
L.
Hultman
,
Cryst. Growth Design
13
,
1801
(
2013
).
42.
J. M.
Schneider
,
D. P.
Sigumonrong
,
D.
Music
,
C.
Walter
,
J.
Emmerlich
,
R.
Iskandar
, and
J.
Mayer
,
Scr. Mater.
57
,
1137
(
2007
).
43.
S. E.
Stoltz
,
H. I.
Starnberg
, and
M. W.
Barsoum
,
J. Phys. Chem. Solids
64
,
2321
(
2003
).
44.
O.
Wilhelmsson
 et al.,
J. Cryst. Growth
291
,
290
(
2006
).
45.
J. F.
Moulder
,
W. F.
Stickle
,
S. P. E.
and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy—A Reference Book of Standard Spectra for Indentification and Interpretation of XPS Data
(
Perkin-Elmer
,
Eden Prairie
,
1992
).
46.
M.
Magnuson
 et al.,
Phys. Rev. B
72
,
245101
(
2005
).
47.
C.
Chen
,
C.
Huang
,
Y.
Lin
,
L.
Chen
, and
K.
Chen
,
Diam. Relat. Mater.
14
,
1126
(
2005
).
48.
M.
Magnuson
,
E.
Lewin
,
L.
Hultman
, and
U.
Jansson
,
Phys. Rev. B
80
,
235108
(
2009
).
49.
E.
Lewin
 et al.,
Surf. Coat. Technol.
202
,
3563
(
2008
).
50.
E.
Lewin
,
M.
Gorgoi
,
F.
Schäfers
,
S.
Svensson
, and
U.
Jansson
,
Surf. Coat. Technol.
204
,
445
(
2009
).
51.
L.
Muehlhoff
,
W. J.
Choyke
,
M. J.
Bozack
, and
J. J. T.
Yates
,
J. Appl. Phys.
60
,
2842
(
1986
).
52.
A.
Mesarwi
and
A.
Ignatiev
,
Surf. Sci.
244
,
15
(
1991
).
53.
International Centre for Diffraction Data, Ti3SiC2, PDF No. 74-0310.
54.
International Centre for Diffraction Data, TiC, PDF No. 32-1383.
55.
International Centre for Diffraction Data, TiSi2, PDF No. 85-0879.
56.
C.
Walter
,
C.
Martinez
,
T.
EI-Raghy
, and
J. M.
Schneider
,
Steel Res. Int.
76
,
225
(
2005
).
57.
M.
Magnuson
 et al.,
Phys. Rev. B.
74
,
205102
(
2006
).
58.
H.
Högberg
,
L.
Hultman
,
J.
Emmerlich
,
T.
Joelsson
,
P.
Eklund
,
J. M.
Molina-Aldaregui
,
J.-P.
Palmquist
,
O.
Wilhelmsson
, and
U.
Jansson
,
Surf. Coat. Technol.
193
,
6
(
2005
).
59.
H. O.
Pierson
,
Handbook of Refractory Carbides and Nitrides — Properties, Characteristics, Processing and Applications
(
Noyes
,
Atlantic City
,
NJ
,
1996
).
60.
J.
Frodelius
,
P.
Eklund
,
M.
Beckers
,
P. O. Å.
Persson
,
H.
Högberg
, and
L.
Hultman
,
Thin Solid Films
518
,
1621
(
2010
).
61.
J.
Frodelius
,
J.
Lu
,
J.
Jensen
,
P.
Paul
,
L.
Hultman
, and
P.
Eklund
,
J. Eur. Ceram. Soc.
33
,
375
(
2013
).
62.
M. D.
Tucker
,
P. O. Å.
Persson
,
M. C.
Guenette
,
J.
Rosén
,
M. M. M.
Bilek
, and
D. R.
McKenzie
,
J. Appl. Phys.
109
,
014903
(
2011
).
63.
M. C.
Guenette
,
M. D.
Tucker
,
M.
Ionescu
,
M. M. M.
Bilek
, and
D. R.
McKenzie
,
J. Appl. Phys.
109
,
083503
(
2011
).
64.
R.
Yu
,
Q.
Zhan
,
L. L.
He
,
Y. C.
Zhou
, and
H. Q.
Ye
,
Acta Mater.
50
,
4127
(
2002
).
65.
H.
Rueß
,
M.
Baben
,
S.
Mráz
,
L.
Shang
,
P.
Polcik
,
S.
Kolozsvári
,
M.
Hans
,
D.
Primetzhofer
, and
J. M.
Schneider
,
Vacuum
145
,
285
(
2017
).
66.
Y.
Li
,
G.
Zhao
,
Y.
Qian
,
J.
Xu
, and
M.
Li
,
Vacuum
153
,
62
(
2018
).
67.
M.
Magnuson
et al.,
Phys. Rev. B.
74
,
195108
(
2006
).
68.
Y.
Li
,
G.
Zhao
,
H.
Qi
,
M.
Li
,
Y.
Zheng
,
Y.
Qian
, and
L.
Sheng
,
Ceram. Int.
44
,
17530
(
2018
).
69.
M.
Magnuson
et al.,
Phys. Rev. B.
76
,
195127
(
2007
).
You do not currently have access to this content.