Transition metal oxides are being increasingly used in many applications like nonvolatile memory, contacts to transition metal dichalcogenide transistors and photovoltaics, and thin-film transistors, to name a few, because the conductivity can be tuned by defect doping. The mechanism of conduction through substoichiometric oxides is however not well understood. Earlier studies attributed the conduction in substoichiometric oxides to Poole–Frenkel emission. But the assumptions underlying the Poole–Frenkel model break down in thin dielectrics and when a broad range of temperature is considered. The authors model the conduction through substoichiometric nickel oxide (NiOx) using a kinetic Monte-Carlo framework based on trap-assisted tunneling (TAT), by studying devices made of metal/NiOx/Si stacks. Modeling the temperature dependence of I–V characteristics enables the extraction of the trap parameters, like trap ionization energy and trap relaxation energy. The authors study the effects of the UV/ozone treatment, which has been shown to reduce the resistivity of NiOx by orders of magnitude, as well as the choice of metal electrode on the trap properties. The high trap relaxation energy (∼1.6 eV) is identified as an important factor in limiting the effectiveness of defect doping in NiOx, because it hinders the carrier emission step of the TAT process. The relaxation energy is another design knob that can be used when screening oxide candidates for various applications.

1.
H.-S. P.
Wong
,
H.-Y.
Lee
,
S.
Yu
,
Y.-S.
Chen
,
Y.
Wu
,
P.-S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M.-J.
Tsai
,
Proc. IEEE
100
,
1951
(
2012
).
2.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
,
Rep. Prog. Phys.
75
,
076502
(
2012
).
3.
D.
Ielmini
,
Semicond. Sci. Technol.
31
,
063002
(
2016
).
4.
K. M.
Kim
,
D. S.
Jeong
, and
C. S.
Hwang
,
Nanotechnology
22
,
254002
(
2011
).
5.
M.
Xue
 et al.,
ACS Appl. Mater. Interfaces
9
,
41863
(
2017
).
6.
M.
Mews
,
L.
Korte
, and
B.
Rech
,
Sol. Energy Mater. Sol. Cells
158
,
77
(
2016
).
7.
J.
Bullock
 et al.,
Energy
1
,
15031
(
2016
).
8.
J.
Geissbühler
 et al.,
Appl. Phys. Lett.
107
,
081601
(
2015
).
9.
S.
Avasthi
,
K. A.
Nagamatsu
,
J.
Jhaveri
,
W. E.
McClain
,
G.
Man
,
A.
Kahn
,
J.
Schwartz
,
S.
Wagner
, and
J. C.
Sturm
, 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO (IEEE, 2014), pp. 0949–0952.
10.
C. J.
McClellan
,
E.
Yalon
,
K. K. H.
Smithe
,
S. V.
Suryavanshi
, and
E.
Pop
, 75th Device Research Conference (DRC)—Conference Digest, South Bend, IN (IEEE, 2017).
11.
S.
Chuang
 et al.,
Nano Lett.
14
,
1337
(
2014
).
12.
L.
Cai
,
C. J.
McClellan
,
A. L.
Koh
,
H.
Li
,
E.
Yalon
,
E.
Pop
, and
X.
Zheng
,
Nano Lett.
17
,
3854
(
2017
).
13.
Y. Y.
Illarionov
,
K. K. H.
Smithe
,
M.
Waltl
,
T.
Knobloch
,
E.
Pop
, and
T.
Grasser
,
IEEE Electron Device Lett.
38
,
1763
(
2017
).
14.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
,
Nat. Mater.
15
,
383
(
2016
).
15.
J.
Yeon Kwon
and
J.
Kyeong Jeong
,
Semicond. Sci. Technol.
30
,
024002
(
2015
).
16.
L.
Petti
,
N.
Münzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Büthe
,
G.
Cantarella
,
F.
Bottacchi
,
T. D.
Anthopoulos
, and
G.
Tröster
,
Phys. Rev.
3
,
021303
(
2016
).
17.
H.
Hu
,
J.
Zhu
,
M.
Chen
,
T.
Guo
, and
F.
Li
,
Appl. Surf. Sci.
441
,
295
(
2018
).
18.
W.-Y.
Chang
,
Y.-C.
Lai
,
T.-B.
Wu
,
S.-F.
Wang
,
F.
Chen
, and
M.-J.
Tsai
,
Appl. Phys. Lett.
92
,
022110
(
2008
).
19.
Z.
Wei
 et al., 2008 IEEE International Electron Devices Meeting, San Francisco, CA, 15–17 December 2008 (IEEE, 2008).
20.
C.-W.
Zhong
 et al.,
Surf. Coat. Technol.
231
,
563
(
2013
).
21.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
22.
23.
X.
,
W.
Yang
,
Z.
Quan
,
T.
Lin
,
L.
Bai
,
L.
Wang
,
F.
Huang
, and
Y.
Zhao
,
J. Am. Chem. Soc.
136
,
419
(
2014
).
24.
K.
Ellmer
,
J. Phys. D Appl. Phys.
33
,
R17
(
2000
).
25.
H.
Sato
,
T.
Minami
,
S.
Takata
, and
T.
Yamada
,
Thin Solid Films
236
,
27
(
1993
).
26.
M.
Morales-Masis
,
L.
Ding
,
F.
Dauzou
,
Q.
Jeangros
,
A.
Hessler-Wyser
,
S.
Nicolay
, and
C.
Ballif
,
APL Mater.
2
,
096113
(
2014
).
27.
B.
Bharti
,
S.
Kumar
,
H.-N.
Lee
, and
R.
Kumar
,
Sci. Rep.
6
,
32355
(
2016
).
28.
P.
Nunes
,
E.
Fortunato
, and
R.
Martins
,
Thin Solid Films
383
,
277
(
2001
).
29.
R.
Islam
 et al.,
ACS Appl. Mater. Interfaces
9
,
17201
(
2017
).
30.
G. H.
Aydogdu
,
D.
Ruzmetov
, and
S.
Ramanathan
,
J. Appl. Phys.
108
,
113702
(
2010
).
31.
See: http://www.mdlsoft.com/ for more details, last accessed 26 November 2018.
32.
H.
Wu
and
L.-S.
Wang
,
J. Chem. Phys.
107
,
16
(
1997
).
33.
R.
Islam
,
K. N.
Nazif
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
63
,
4788
(
2016
).
34.
S.
Hüfner
,
J.
Osterwalder
,
T.
Riesterer
, and
F.
Hulliger
,
Solid State Commun.
52
,
793
(
1984
).
35.
A. B.
Kunz
,
J. Phys. C Solid State Phys.
14
,
L455
(
1981
).
36.
R.
Islam
,
G.
Shine
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
105
,
182103
(
2014
).
37.
A.
Gehring
,
Simulation of Tunneling in Semiconductor Devices
(
TU Wien
,
Vienna
,
2003
).
38.
Y. M.
Kim
and
J. S.
Lee
,
J. Appl. Phys.
104
,
114115
(
2008
).
39.
C.-Y.
Lin
,
S.-Y.
Wang
,
D.-Y.
Lee
, and
T.-Y.
Tseng
,
J. Electrochem. Soc.
155
,
H615
(
2008
).
40.
S.
Yu
,
X.
Guan
, and
H. S. P.
Wong
,
Appl. Phys. Lett.
99
,
063507
(
2011
).
41.
R. G.
Southwick
,
J.
Reed
,
C.
Buu
,
R.
Butler
,
G.
Bersuker
, and
W. B.
Knowlton
,
IEEE Trans. Device Mater. Reliab.
10
,
201
(
2010
).
42.
J.
Ding
 et al.,
Chem. Mater.
30
,
4919
(
2018
).
43.
J.
Balachandran
,
L.
Lin
,
J. S.
Anchell
,
C. A.
Bridges
, and
P.
Ganesh
,
J. Phys. Chem. C
121
,
26637
(
2017
).
44.
H.
Shin
,
Y.
Luo
,
P.
Ganesh
,
J.
Balachandran
,
J. T.
Krogel
,
P. R. C.
Kent
,
A.
Benali
, and
O.
Heinonen
,
Phys. Rev. Mater.
1
,
073603
(
2017
).
45.
L.
Vandelli
,
A.
Padovani
,
L.
Larcher
,
R. G.
Southwick
,
W. B.
Knowlton
, and
G.
Bersuker
,
IEEE Trans. Electron Devices
58
,
2878
(
2011
).
46.
R.
Tsu
and
L.
Esaki
,
Appl. Phys. Lett.
22
,
562
(
1973
).
47.
J.
Speight
,
Lange’s Handbook of Chemistry
, 70th Anniversary Edition (
McGraw-Hill Education
,
2005
).
48.
R.
Ramprasad
,
J. Appl. Phys.
94
,
5609
(
2003
).
49.
O.
Pirrotta
,
A.
Padovani
,
L.
Larcher
,
L.
Zhao
,
B.
Magyari-Köpe
, and
Y.
Nishi
, 2014 International Conference on Simulation of Semiconductor Processes and Devices, Yokohama, Japan, 9–11 September 2014 (IEEE, 2014).
50.
A. F.
Wright
and
J. S.
Nelson
,
J. Appl. Phys.
92
,
5849
(
2002
).
51.
See supplementary material at https://doi.org/10.1116/1.5055563 for a detailed description of the experimental methods.

Supplementary Material

You do not currently have access to this content.