The authors report the reaction mechanism of the initial fluorination process on the H-terminated Si and the OH-terminated SiO2 surfaces with HF, CF4, CHF3, NF3, and ClF3. The reaction process in which a fluorine atom in a gas molecule dissociates Si–OH or Si–H surface group to form Si-F bonds is modeled and simulated by density functional theory calculations using a slab surface model. The physisorption and the chemisorption of all gases on the SiO2 surface are exothermic. However, the activation energy for chemisorption varies depending on the molecule. HF demonstrates the lowest activation energy of 0.18 eV, while CF4 has the highest value of 6.32 eV. In the case of the Si surface, the physisorption and the chemisorption of all gases are also exothermic reactions. ClF3 and NF3 exhibit near zero activation energies of 0.02 and 0.04 eV, whereas CHF3 has the highest value of 2.33 eV. Their calculation results explain the mechanism of the vapor phase etching of Si and SiO2.

1.
K.
Schuegraf
,
M. C.
Abraham
,
A.
Brand
,
M.
Naik
, and
R.
Thakur
,
IEEE J. Electron Devices Soc.
1
,
66
(
2013
).
2.
J.
Sato
and
T.
Tanabe
, U.S. patent 3,709,749 (
9 January 1973
).
3.
R. C.
Henderson
,
J. Electrochem. Soc.
119
,
772
(
1972
).
4.
T.
Hattori
,
ECS Trans.
25
,
3
(
2009
).
5.
Y.
Horike
and
M.
Shibagaki
,
Jpn. J. Appl. Phys.
15
(
1976
).
6.
L. M.
Ephrath
and
R. S.
Bennett
,
J. Electrochem. Soc.
129
,
1822
(
1982
).
7.
H. F.
Winters
and
J. W.
Coburn
,
Appl. Phys. Lett.
34
,
70
(
1979
).
8.
D. E.
Ibbotson
,
J. A.
Mucha
,
D. L.
Flamm
, and
J. M.
Cook
,
J. Appl. Phys.
56
,
2939
(
1984
).
9.
Y.
Saito
,
O.
Yamaoka
, and
A.
Yoshida
,
Appl. Phys. Lett.
56
,
1119
(
1990
).
10.
S.
Saito
,
Y.
Hagimoto
,
H.
Iwamoto
, and
Y.
Muraki
,
Solid State Phenom.
145–146
,
227
(
2009
).
11.
C. T.
Carver
,
J. J.
Plombon
,
P. E.
Romero
,
S.
Suri
,
T. A.
Tronic
,
J.
Robert
, and
B.
Turkot
,
ECS J. Solid State Sci. Technol.
4
,
N5005
(
2015
).
12.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
13.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
,
7657
(
2016
).
14.
T. J.
Chuang
,
J. Appl. Phys.
51
,
2614
(
1980
).
15.
C. J.
Wu
and
E. A.
Carter
,
J. Am. Chem. Soc.
113
,
9061
(
1991
).
16.
L.
Bouamama
,
A.
Lounis
,
A.
Ziane
, and
A.
Mokrani
, “
DFT study of F atom adsorption on Si(001) surface
,” in
the 5th International Conference on NDT and Materials Industry and Alloys (IC-WNDT-MI)
(The International Committee for Non-destructive Testing,
2016
), No. 174, see https://library.crti.dz/cf1650.
17.
T.
Hoshino
and
Y.
Nishioka
,
J. Chem. Phys.
111
,
2109
(
1999
).
18.
T.
Hoshino
and
Y.
Nishioka
,
Jpn. J. Appl. Phys.
38
,
6855
(
1999
).
19.
A.
Comas-Vives
,
Phys. Chem. Chem. Phys.
18
,
7475
(
2016
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
21.
E. R.
McNellis
,
J.
Meyer
, and
K.
Reuter
,
Phys. Rev. B
80
,
205414
(
2009
).
22.
L.
Bengtsson
,
Phys. Rev. B Condens. Matter Mater. Phys.
59
,
12301
(
1999
).
23.
T. R.
Mayangsari
,
L. L.
Yusup
,
J. M.
Park
,
E.
Blanquet
,
M.
Pons
,
J.
Jung
, and
W. J.
Lee
,
J. Cryst. Growth
468
,
278
(
2017
).
24.
J. T.
Fitch
,
J. Electrochem. Soc.
141
,
1046
(
1994
).
25.
D.
Ceresoli
,
M.
Bernasconi
,
S.
Iarlori
,
M.
Parrinello
, and
E.
Tosatti
,
Phys. Rev. Lett.
84
,
3887
(
2000
).
26.
C.
Kittels
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1986
).
27.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Šahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
1
(
2009
).
28.
H.
Fock
,
D.
Techniques
,
E.
Gnani
,
S.
Member
,
S.
Reggiani
,
R.
Colle
,
M.
Rudan
, and
S.
Member
,
IEEE Trans. Electron Devices
47
,
1795
(
2000
).
29.
N.
Govind
,
M.
Petersen
,
G.
Fitzgerald
,
D.
King-Smith
, and
J.
Andzelm
,
Comput. Mater. Sci.
28
,
250
(
2003
).
30.
J. M.
Park
,
S. J.
Jang
,
L. L.
Yusup
,
W. J.
Lee
, and
S. I.
Lee
,
ACS Appl. Mater. Interfaces
8
,
20865
(
2016
).
31.
T. R.
Mayangsari
,
J. M.
Park
,
L. L.
Yusup
,
J.
Gu
,
J. H.
Yoo
,
H.
Do Kim
, and
W. J.
Lee
,
Langmuir
34
,
6660
(
2018
).
32.
T.
Takahagi
,
I.
Nagai
,
A.
Ishitani
,
H.
Kuroda
, and
Y.
Nagasawa
,
J. Appl. Phys.
64
,
3516
(
1988
).
33.
N.
Miki
,
H.
Kikuyama
,
I.
Kawanabe
,
M.
Miyashita
, and
T.
Ohmi
,
IEEE Trans. Electron Devices
37
,
107
(
1990
).
34.
H.
Habuka
,
T.
Otsuka
, and
M.
Katayama
,
J. Cryst. Growth
186
,
104
(
1998
).
35.
A.
Witvrouw
,
B.
Du Bois
,
P.
De Moor
,
A.
Verbist
,
C. A.
Van Hoof
,
H.
Bender
, and
C.
Baert
,
Proc. SPIE
4174
,
130
(
2000
).
36.
M.
Saito
,
Y.
Kataoka
,
T.
Homma
, and
T.
Nagatomo
,
J. Electrochem. Soc.
147
,
4630
(
2000
).
37.
H.
Habuka
,
T.
Sukenobu
,
H.
Koda
,
T.
Takeuchi
, and
M.
Aihara
,
J. Electrochem. Soc.
151
,
G783
(
2004
).
38.
B.
Kastenmeier
,
P.
Matsuo
,
G.
Oehrlein
, and
J.
Langan
,
J. Vac. Sci. Technol. A
16
,
2047
(
1998
).
39.
J. A.
Shorter
,
J. G.
Langan
, and
J. I.
Steinfeld
,
Surf. Sci. Lett.
219
,
L560
(
1989
).
40.
H.
Ogawa
,
T.
Arai
,
M.
Yanagisawa
,
T.
Ichiki
, and
Y.
Horiike
,
Jpn. J. Appl. Phys.
41
,
5349
(
2002
).
41.
H. J.
Oh
,
J. H.
Lee
,
M. S.
Lee
,
W. G.
Shin
,
S. Y.
Kang
,
G. D.
Kim
, and
D. H.
Ko
,
ECS Trans.
61
,
1
(
2014
).
42.
N. R.
Rueger
,
M. F.
Doemling
,
M.
Schaepkens
,
J. J.
Beulens
,
T. E. F. M.
Standaert
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A.
17
,
2492
(
1999
).
43.
K.
Koh
,
Y.
Kim
,
C.
Kim
, and
H.
Chae
,
J. Vac. Sci. Technol. A
36
,
01B106
(
2018
).
You do not currently have access to this content.