The authors report on the real-time monitoring of self-limiting aluminum nitride growth process by using multiwavelength in situ ellipsometry. Aluminum nitride (AlN) thin films were grown on Si(100) substrates via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using trimethylaluminum (TMA) and Ar/N2/H2 plasma as metal precursor and coreactant, respectively. Growth saturation experiments within 100–250 °C temperature range were carried out without interruption as extended single runs featuring 10-cycle subruns for each parameter change. The sensitivity of the multiwavelength ellipsometry provided sufficient resolution to observe not only the minuscule changes in the growth-per-cycle (GPC) parameter, but also the single chemical adsorption (chemisorption) and plasma-assisted ligand removal events. GPC values showed a slight increasing slope within 100–200 °C, followed by a stronger surge at 250 °C, signaling the onset of thermal decomposition. The real-time dynamic in situ monitoring revealed mainly the following insights into the HCPA-ALD process of AlN: (i) film growth rate and TMA chemisorption amount exhibited plasma power dependent saturation behavior, which was also correlated with the substrate temperature; (ii) time-dependent refractive index evolution indicated a nonconstant relationship: a faster increase within the first ∼100 cycles followed by a slower increase as the AlN film gets thicker; and (iii) a considerable improvement in crystallinity was observed when the substrate temperature exceeded 200 °C. Besides in situ optical characterization, ex situ optical, structural, and chemical characterization studies were also carried out on 500-cycle grown AlN films as a function of substrate temperature. All AlN samples displayed a single-phase wurtzite polycrystalline character with no detectable carbon and relatively low (<5%) oxygen content within the bulk of the films. Moreover, regardless of the deposition temperature, HCPA-ALD grown AlN films exhibited highly stoichiometric elemental composition.

1.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
2.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
3.
K.
Mistry
 et al,
IEEE International Electron Devices Meeting
, Washington, DC, 10–12 December 2007 (IEEE,
2007
).
4.
A. J. M.
Mackus
,
A. A.
Bol
, and
W. M. M.
Kessels
,
Nanoscale
6
,
10941
(
2014
).
5.
H.
Kim
,
C.
Detavernier
,
O.
van der Straten
, and
S. M.
Rossnagel
,
J. Appl. Phys.
98
,
014308
(
2005
).
6.
S.
Dey
 et al,
J. Vac. Sci. Technol. A
35
,
03E109
(
2017
).
7.
M.
Xie
,
X.
Sun
,
C.
Zhou
,
A. S.
Cavanagh
,
H.
Sun
,
T.
Hu
,
G.
Wang
,
J.
Lian
, and
S. M.
George
,
J. Electrochem. Soc.
162
,
A974
(
2015
).
8.
Y. S.
Jung
,
P.
Lu
,
A. S.
Cavanagh
,
C.
Ban
,
G.-H.
Kim
,
S.-H.
Lee
,
S. M.
George
,
S. J.
Harris
, and
A. C.
Dillon
,
Adv. Energy Mater.
3
,
213
(
2013
).
9.
J. A.
van Delft
,
D.
Garcia-Alonso
, and
W. M. M.
Kessels
,
Semicond. Sci. Technol.
27
,
074002
(
2012
).
10.
J.
Schmidt
,
A.
Merkle
,
R.
Brendel
,
B.
Hoex
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Prog. Photovolt. Res. Appl.
16
,
461
(
2008
).
11.
A.
Richter
,
J.
Benick
,
M.
Hermle
, and
S. W.
Glunz
,
Phys. Status Solidi Rapid Res. Lett.
5
,
202
(
2011
).
12.
B. J.
O’Neill
 et al,
ACS Catal.
5
,
1804
(
2015
).
13.
J. L.
Lu
,
J. W.
Elam
, and
P. C.
Stair
,
Acc. Chem. Res.
46
,
1806
(
2013
).
14.
M. A.
Khalily
,
H.
Eren
,
S.
Akbayrak
,
H. H.
Susapto
,
N.
Biyikli
,
S.
Özkar
, and
M. O.
Guler
,
Angew. Chem. Int. Ed.
55
,
12257
(
2016
).
15.
B. J.
Kim
 et al,
Energy Environ. Sci.
8
,
916
(
2015
).
16.
J.
Sheng
,
K.-L.
Han
,
T. H.
Hong
,
W.-H.
Choi
, and
J.-S.
Park
,
J. Semicond.
39
,
011008
(
2018
).
17.
18.
E.
Stevens
,
Y.
Tomczak
,
B. T.
Chan
,
E. A.
Sanchez
,
G. N.
Parsons
, and
A.
Delabie
,
Chem. Mater.
30
,
3223
(
2018
).
19.
S. N.
Chopra
,
Z.
Zhang
,
C.
Kaihlanen
, and
J. G.
Ekerdt
,
Chem. Mater.
28
,
4928
(
2016
).
20.
A.
Haider
,
M.
Yilmaz
,
P.
Deminskyi
,
H.
Eren
, and
N.
Biyikli
,
RSC Adv.
6
,
106109
(
2016
).
21.
J. A.
Singh
,
N. F. W.
Thissen
,
W.-H.
Kim
,
H.
Johnson
,
W. M. M.
Kessels
,
A. A.
Bol
,
S. F.
Bent
, and
A. J. M.
Mackus
,
Chem. Mater.
30
,
663
(
2018
).
22.
J. W.
Elam
,
M. D.
Groner
, and
S. M.
George
,
Rev. Sci. Instrum.
73
,
2981
(
2002
).
23.
E.
Langereis
,
S. B. S.
Heil
,
H. C. M.
Knoops
,
W.
Keuning
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Phys. D Appl. Phys.
42
,
073001
(
2009
).
24.
X.
Jiang
,
H.
Wang
,
J.
Qi
, and
B. G.
Willis
,
J. Vac. Sci. Technol. A
32
,
041513
(
2014
).
25.
N.
Leick
,
J. W.
Weber
,
A. J. M.
Mackus
,
M. J.
Weber
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Phys. D Appl. Phys.
49
,
115504
(
2016
).
26.
A. J. M.
Mackus
,
S. B. S.
Heil
,
E.
Langereis
,
H. C. M.
Knoops
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
28
,
77
(
2010
).
27.
H. C. M.
Knoops
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
30
,
01A101
(
2012
).
28.
E.
Langereis
,
J.
Keijmel
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
Appl. Phys. Lett.
92
,
231904
(
2008
).
29.
W. M. M.
Kessels
,
H. C. M.
Knoops
,
S. A. F.
Dielissen
,
A. J. M.
Mackus
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
95
,
013114
(
2009
).
30.
J. M.
Lownsbury
,
J. A.
Gladden
,
C. T.
Campbell
,
I. S.
Kim
, and
A. B. F.
Martinson
,
Chem. Mater.
29
,
8566
(
2017
).
31.
J.
Dendooven
,
K.
Devloo-Casier
,
E.
Levrau
,
R.
Van Hove
,
S. S.
Pulinthanathu
,
M. R.
Baklanov
,
J. A.
Martens
, and
C.
Detavernier
,
Langmuir
28
,
3852
(
2012
).
32.
H. C. M.
Knoops
,
A. J. M.
Mackus
,
M. E.
Donders
,
M. C. M.
Van De Sanden
,
P. H. L.
Notten
, and
W. M. M.
Kessels
,
Electrochem. Solid State Lett.
12
,
G34
(
2009
).
33.
S. B. S.
Heil
,
E.
Langereis
,
A.
Kemmeren
,
F.
Roozeboom
,
M. C. M.
Van De Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
23
,
L5
(
2005
).
34.
E.
Langereis
,
S. B.
Heil
,
M. C. M.
Van De Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
100
,
023534
(
2006
).
35.
E.
Langereis
,
H. C. M.
Knoops
,
A. J. M.
Mackus
,
F.
Roozeboom
,
M. C. M.
Van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
102
,
083517
(
2007
).
36.
H.
Van Bui
,
A. W.
Groenland
,
A. A.
Aarnink
,
R. A.
Wolters
,
J.
Schmitz
, and
A. Y.
Kovalgin
,
J. Electrochem. Soc.
158
,
H214
(
2011
).
37.
H.
Van Bui
,
F. B.
Wiggers
,
A.
Gupta
,
M. D.
Nguyen
,
A. A.
Aarnink
,
M. P.
de Jong
, and
A. Y.
Kovalgin
,
J. Vac. Sci. Technol. A
33
,
01A111
(
2015
).
38.
B. D.
Johs
and
B. A.
Hadwiger
, U.S. patent 9,354,118 (31 May
2016
).
39.
C.
Ozgit
,
I.
Donmez
,
M.
Alevli
, and
N.
Biyikli
,
Thin Solid Films
520
,
2750
(
2012
).
40.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
Phys. Status Solidi (A)
209
,
266
(
2012
).
41.
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
,
Properties of Advanced Semiconductor Materials
(
Wiley
,
New York
,
2001
).
42.
L.
Rosenberger
,
R.
Baird
,
E.
McCullen
,
G.
Auner
, and
G.
Shreve
,
Surf. Interface Anal.
40
,
1254
(
2008
).
43.
D.
Manova
,
V.
Dimitrova
,
W.
Fukarek
, and
D.
Karpuzov
,
Surf. Coat. Technol.
106
,
205
(
1998
).
44.
H. M.
Liao
,
R. N. S.
Sodhi
, and
T. W.
Coyle
,
J. Vac. Sci. Technol. A
11
,
2681
(
1993
).
45.
M.
Bosund
,
T.
Sajavaara
,
M.
Laitinen
,
T.
Huhtio
,
M.
Putkonen
,
V.-M.
Airaksinen
, and
H.
Lipsanen
,
Appl. Surf. Sci.
257
,
7827
(
2011
).
46.
N.
Nepal
,
S. B.
Qadri
,
J. K.
Hite
,
N. A.
Mahadik
,
M. A.
Mastro
, and
C. R.
Eddy
, Jr.
,
Appl. Phys. Lett.
103
,
082110
(
2013
).
47.
P.
Motamedi
and
K.
Cadien
,
J. Cryst. Growth
421
,
45
(
2015
).
48.
V.
Tarala
,
M.
Ambartsumov
,
A.
Altakhov
,
V.
Martens
, and
M.
Shevchenko
,
J. Cryst. Growth
455
,
157
(
2016
).
49.
L.
Tian
 et al,
Surf. Coat. Technol.
347
,
181
(
2018
).
50.
C.
Ozgit-Akgun
,
E.
Goldenberg
,
A. K.
Okyay
, and
N.
Biyikli
,
J. Mater. Chem. C
2
,
2123
(
2014
).
51.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
J. Vac. Sci. Technol. A
30
, 021506 (
2012
).
52.
S.
Banerjee
,
A. A. I.
Aarnink
,
R.
van de Kruijs
,
A. Y.
Kovalgin
, and
J.
Schmitz
,
Phys. Status Solidi (C)
12
,
1036
(
2015
).
53.
See supplementary material at https://doi.org/10.1116/1.5085341 for additional in situ and ex situ process and materials characterization results.

Supplementary Material

You do not currently have access to this content.