In this work, we have studied the applicability of Co(BTSA)2(THF) [BTSA = bis(trimethylsilyl)amido] (THF = tetrahydrofuran) in atomic layer deposition (ALD) of cobalt oxide thin films. When adducted with THF, the resulting Co(BTSA)2(THF) showed good volatility and could be evaporated at 55 °C, which enabled film deposition in the temperature range of 75–250 °C. Water was used as the coreactant, which led to the formation of Co(II) oxide films. The saturative growth mode characteristic to ALD was confirmed with respect to both precursors at deposition temperatures of 100 and 200 °C. According to grazing incidence x-ray diffraction measurements, the films contain both cubic rock salt and hexagonal wurtzite phases of CoO. X-ray photoelectron spectroscopy measurements confirmed that the primary oxidation state of cobalt in the films is +2. The film composition was analyzed using time-of-flight elastic recoil detection analysis, which revealed the main impurities in the films to be H and Si. The Si impurities originate from the BTSA ligand and increased with increasing deposition temperature, which indicates that Co(BTSA)2(THF) is best suited for low-temperature deposition. To gain insight into the surface chemistry of the deposition process, an in situ reaction mechanism study was conducted using quadrupole mass spectroscopy and quartz crystal microbalance techniques. Based on the in situ experiments, it can be concluded that film growth occurs via a ligand exchange mechanism.

1.
J.
Yang
,
H.
Liu
,
W. N.
Martens
, and
R. L.
Frost
,
J. Phys. Chem. C
114
,
111
(
2010
).
2.
X.
Zhang
,
Y.-S.
Chen
,
P. V.
Kamat
, and
S.
Ptasinska
,
J. Phys. Chem. C
122
,
13894
13901
(
2018
).
3.
M.
Schwarz
 et al,
J. Phys. Chem. Lett.
9
,
2763
(
2018
).
4.
J. B.
Gerken
,
J. G.
McAlpin
,
J. Y. C.
Chen
,
M. L.
Rigsby
,
W. H.
Casey
,
R. D.
Britt
, and
S. S.
Stahl
,
J. Am. Chem. Soc.
133
,
14431
(
2011
).
5.
M.
Favaro
,
J.
Yang
,
S.
Nappini
,
E.
Magnano
,
F. M.
Toma
,
E. J.
Crumlin
,
J.
Yano
, and
I. D.
Sharp
,
J. Am. Chem. Soc.
139
,
8960
(
2017
).
6.
D.
Li
,
L.-X.
Ding
,
S.
Wang
,
D.
Cai
, and
H.
Wang
,
J. Mater. Chem. A
2
,
5625
(
2014
).
8.
B.
Wang
,
J. B.
Bates
,
F. X.
Hart
,
B. C.
Sales
,
R. A.
Zuhr
, and
J. D.
Robertson
,
J. Electrochem. Soc.
143
,
3203
(
1996
).
9.
Z. X.
Shen
 et al,
Phys. Rev. B
42
,
1817
(
1990
).
10.
J. F.
Liu
,
S.
Yin
,
H. P.
Wu
,
Y. W.
Zeng
,
X. R.
Hu
,
Y. W.
Wang
,
G. L.
Lv
, and
J. Z.
Jiang
,
J. Phys. Chem. B
110
,
21588
(
2006
).
11.
W. S.
Seo
,
J. H.
Shim
,
S. J.
Oh
,
E. K.
Lee
,
N. H.
Hur
, and
J. T.
Park
,
J. Am. Chem. Soc.
127
,
6188
(
2005
).
12.
J. F.
Liu
,
Y.
He
,
W.
Chen
,
G. Q.
Zhang
,
Y. W.
Zeng
,
T.
Kikegawa
, and
J. Z.
Jiang
,
J. Phys. Chem. C
111
,
2
(
2007
).
13.
L.
Qiao
 et al,
J. Mater. Chem. C
1
,
4628
(
2013
).
14.
J.
Chen
,
X.
Wu
, and
A.
Selloni
,
Phys. Rev. B
83
,
245204
(
2011
).
15.
W. L.
Smith
and
A. D.
Hobson
,
Acta Crystallogr. B
29
,
362
(
1973
).
16.
M.
Schwarz
,
S.
Mohr
,
C.
Hohner
,
K.
Werner
,
T.
Xu
, and
J.
Libuda
,
J. Phys. Chem. C
(
2018
).
17.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
2717
(
2011
).
18.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
19.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
20.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
21301
(
2013
).
21.
M. E.
Donders
,
H. C. M.
Knoops
,
M. C. M.
van de Sanden
,
W. M. M.
Kessels
, and
P. H. L.
Notten
,
ECS Trans.
25
,
39
(
2009
).
22.
K. B.
Klepper
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Cryst. Growth
307
,
457
(
2007
).
23.
M.
Diskus
,
O.
Nilsen
, and
H.
Fjellvag
,
Chem. Vap. Depos.
17
,
135
(
2011
).
24.
B.
Han
,
K. H.
Choi
,
J. M.
Park
,
J. W.
Park
,
J.
Jung
, and
W.-J.
Lee
,
J. Vac. Sci. Technol. A
31
,
01A145
(
2013
).
25.
B.
Han
,
K. H.
Choi
,
K.
Park
,
W. S.
Han
, and
W.-J.
Lee
,
Electrochem. Solid State Lett.
15
,
D14
(
2012
).
26.
D. K.
Nandi
,
J.
Manna
,
A.
Dhara
,
P.
Sharma
, and
S. K.
Sarkar
,
J. Vac. Sci. Technol. A
34
,
01A115
(
2016
).
27.
J.
Kim
 et al,
Chem. Mater.
29
,
5796
(
2017
).
28.
D. J.
Hagen
,
T. S.
Tripathi
, and
M.
Karppinen
,
Dalton Trans.
46
,
4796
(
2017
).
29.
K. B.
Klepper
,
O.
Nilsen
, and
H.
Fjellvag
,
Thin Solid Films
515
,
7772
(
2007
).
30.
B. S.
Lim
,
A.
Rahtu
, and
R. G.
Gordon
,
Nat. Mater.
2
,
749
(
2003
).
31.
T. Q.
Ngo
 et al,
J. Appl. Phys.
114
,
84901
(
2013
).
32.
K.
Väyrynen
,
T.
Hatanpää
,
M.
Mattinen
,
M.
Heikkilä
,
K.
Mizohata
,
K.
Meinander
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
,
Chem. Mater.
30
,
3499
(
2018
).
33.
D. V.
Baxter
,
M. H.
Chisholm
,
G. J.
Gama
,
A. L.
Hector
, and
I. P.
Parkin
,
Chem. Vap. Depos.
1
,
49
(
1995
).
34.
J.
Hämäläinen
,
F.
Munnik
,
T.
Hatanpää
,
J.
Holopainen
,
M.
Ritala
, and
M.
Leskelä
,
J. Vac. Sci. Technol. A
30
,
01A106
(
2012
).
35.
Y.
Tomczak
,
K.
Knapas
,
M.
Sundberg
,
M.
Leskelä
, and
M.
Ritala
,
J. Phys. Chem. C
117
,
14241
(
2013
).
36.
E.
Østreng
,
H. H.
Sønsteby
,
T.
Sajavaara
,
O.
Nilsen
, and
H.
Fjellvåg
,
J. Mater. Chem. C
1
,
4283
(
2013
).
37.
M.
Vehkamäki
,
T.
Hatanpää
,
M.
Ritala
, and
M.
Leskelä
,
J. Mater. Chem.
14
,
3191
(
2004
).
38.
S.
Selvaraj
,
H.
Moon
,
J. Y.
Yun
, and
D. H.
Kim
,
Korean J. Chem. Eng.
33
,
3516
(
2016
).
39.
J.
Tupala
,
M.
Kemell
,
M.
Mattinen
,
K.
Meinander
,
S.
Seppälä
,
T.
Hatanpää
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
,
J. Vac. Sci. Technol. A
35
,
041506
(
2017
).
40.
W.
He
,
S.
Schuetz
,
R.
Solanki
,
J.
Belot
, and
J.
McAndrew
,
Electrochem. Solid State Lett.
7
,
G131
(
2004
).
41.
D. H.
Triyoso
 et al,
J. Vac. Sci. Technol. B
22
,
2121
(
2004
).
42.
D. H.
Triyoso
,
R. I.
Hegde
,
J. M.
Grant
,
J. K.
Schaeffer
,
D.
Roan
,
B. E.
White
, and
P. J.
Tobin
,
J. Vac. Sci. Technol. B
23
,
288
(
2005
).
43.
K.
Kukli
,
M.
Ritala
,
T.
Pilvi
,
T.
Sajavaara
,
M.
Leskelä
,
A. C.
Jones
,
H. C.
Aspinall
,
D. C.
Gilmer
, and
P. J.
Tobin
,
Chem. Mater.
16
,
5162
(
2004
).
44.
K.
Kukli
 et al,
Chem. Vap. Depos.
12
,
158
(
2006
).
45.
W.-H.
Nam
and
S.-W.
Rhee
,
Electrochem. Solid State Lett.
7
,
C55
(
2004
).
46.
J. P.
Coyle
,
G.
Dey
,
E. R.
Sirianni
,
M. L.
Kemell
,
G. P. A.
Yap
,
M.
Ritala
,
M.
Leskelä
,
S. D.
Elliott
, and
S. T.
Barry
,
Chem. Mater.
25
,
1132
(
2013
).
47.
M.
Mäkelä
,
T.
Hatanpää
,
M.
Ritala
,
M.
Leskelä
,
K.
Mizohata
,
K.
Meinander
, and
J.
Räisänen
,
J. Vac. Sci. Technol. A
35
,
01B112
(
2016
).
48.
K.
Knapas
and
M.
Ritala
,
Crit. Rev. Solid State Mater. Sci.
38
,
167
(
2013
).
49.
A. M.
Bryan
,
G. J.
Long
,
F.
Grandjean
, and
P. P.
Power
,
Inorg. Chem.
52
,
12152
(
2013
).
50.
51.
A.
Rahtu
and
M.
Ritala
,
Electrochem. Soc. Proc.
2000-13
,
105
(
2000
).
52.
M.
Ylilammi
and
T.
Ranta-aho
,
Thin Solid Films
232
,
56
(
1993
).
53.
J.
Jokinen
,
J.
Keinonen
,
P.
Tikkanen
,
A.
Kuronen
,
T.
Ahlgren
, and
K.
Nordlund
,
Nucl. Instrum. Methods Phys. Res. B
119
,
533
(
1996
).
54.
V.
Pore
,
A.
Rahtu
,
M.
Leskelä
,
M.
Ritala
,
T.
Sajavaara
, and
J.
Keinonen
,
Chem. Vap. Deposition
10
,
143
(
2004
).
55.
M. D.
Groner
,
F. H.
Fabreguette
,
J. W.
Elam
, and
S. M.
George
,
Chem. Mater.
16
,
639
(
2004
).
56.
M.
Putkonen
,
T.
Sajavaara
,
L.
Niinistö
, and
J.
Keinonen
,
Anal. Bioanal. Chem.
382
,
1791
(
2005
).
57.
F.
Weinhold
and
R.
West
,
Organometallics
30
,
5815
(
2011
).
58.
Y.
Hou
,
H.
Kondoh
,
M.
Shimojo
,
T.
Kogure
, and
T.
Ohta
,
J. Phys. Chem. B
109
,
19094
(
2005
).
59.
S.
Haukka
and
A.
Root
,
J. Phys. Chem.
98
,
1695
(
1994
).
You do not currently have access to this content.