Pseudobinary V0.5Mo0.5Nx(111) alloys with the B1-NaCl crystal structure are grown on Al2O3(0001) substrates in an ultra-high-vacuum system by reactive magnetron sputter deposition in mixed Ar/N2 atmospheres at temperatures Ts between 100 and 900 °C. Nitrogen-to-metal, N/(V + Mo), fractions x vary monotonically from 0.9 ± 0.1 with Ts = 100 °C to 0.4 ± 0.1 at Ts = 900 °C. Nitrogen loss at higher growth temperatures leads to a corresponding decrease in the relaxed lattice parameter ao from 4.21 ± 0.01 Å at Ts = 300 °C to 4.125 ± 0.005 Å with Ts = 900 °C. Scanning electron micrographs of cube-corner nanoindents extending into the substrate show that the films are relatively ductile, exhibiting material pile-up (plastic flow) around the indent edges. Nanoindentation hardnesses H and elastic moduli E, obtained using a calibrated Berkovich tip, of V0.5Mo0.5Nx(111) layers increase with increasing Ts (decreasing x) from 15 ± 1 and 198 ± 5 GPa at 100 °C to 23 ± 2 and 381 ± 11 GPa at 900 °C. These values are lower than the corresponding results obtained for the 001-oriented V0.5Mo0.5Nx films. In addition, film wear resistance increases with increasing Ts, while the coefficient of friction, under 1000 μN loads, is 0.09 ± 0.01 for all layers.

1.
W. D.
Münz
,
J. Vac. Sci. Technol. A
4
,
2717
(
1986
).
2.
H.
Ljungcrantz
,
M.
Odén
,
L.
Hultman
,
J.
Greene
, and
J. E.
Sundgren
,
J. Appl. Phys.
80
,
6725
(
1996
).
4.
K.
Kutschej
,
P.
Mayrhofer
,
M.
Kathrein
,
P.
Polcik
, and
C.
Mitterer
,
Surf. Coat. Technol.
188
,
358
(
2004
).
5.
K.
Kutschej
,
C.
Mitterer
,
C. P.
Mulligan
, and
D.
Gall
,
Adv. Eng. Mater.
8
,
1125
(
2006
).
6.
M.
Mikula
 et al,
Acta Mater.
121
,
59
(
2016
).
7.
M.
Mikula
 et al,
J. Appl. Phys.
121
,
155304
(
2017
).
8.
L. E.
Toth
,
Transition Metal Carbides and Nitrides
(
Academic
,
New York
,
1971
).
9.
A. T.
Santhanam
, “
Application of transition metal carbides and nitrides in industrial tools
,” in
The Chemistry of Transition Metal Carbides and Nitrides
, edited by
S. T.
Oyama
(
Springer
,
Netherlands
,
1996
), pp.
28
52
.
10.
S.-H.
Jhi
and
J.
Ihm
,
Phys. Rev. B
56
,
13826
(
1997
).
11.
S. H.
Jhi
,
S. G.
Louie
,
M. L.
Cohen
, and
J.
Ihm
,
Phys. Rev. Lett.
86
,
3348
(
2001
).
12.
S.-H.
Jhi
,
S. G.
Louie
,
M. L.
Cohen
, and
J.
Morris
 Jr.
,
Phys. Rev. Lett.
87
,
075503
(
2001
).
13.
T.
Dasgupta
,
U. V.
Waghmare
, and
A. M.
Umarji
,
Phys. Rev. B
76
,
174110
(
2007
).
14.
D. G.
Sangiovanni
,
V.
Chirita
, and
L.
Hultman
,
Phys. Rev. B
81
,
104107
(
2010
).
15.
D. G.
Sangiovanni
,
L.
Hultman
, and
V.
Chirita
,
Acta Mater.
59
,
2121
(
2011
).
16.
D. G.
Sangiovanni
,
V.
Chirita
, and
L.
Hultman
,
Thin Solid Films
520
,
4080
(
2012
).
17.
D. G.
Sangiovanni
,
L.
Hultman
,
V.
Chirita
,
I.
Petrov
, and
J. E.
Greene
,
Acta Mater.
103
,
823
(
2016
).
18.
H.
Kindlund
 et al,
APL Mater.
1
,
042104
(
2013
).
19.
H.
Kindlund
,
D. G.
Sangiovanni
,
J.
Lu
,
J.
Jensen
,
V.
Chirita
,
J.
Birch
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Acta Mater.
77
,
394
(
2014
).
20.
H.
Kindlund
 et al,
Acta Mater.
126
,
194
(
2017
).
21.
G.
Greczynski
,
H.
Kindlund
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Sci. Spectra
20
,
80
(
2013
).
22.
G.
Greczynski
,
H.
Kindlund
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Sci. Spectra
20
,
74
(
2013
).
23.
G.
Greczynski
,
H.
Kindlund
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
Surf. Sci. Spectra
20
,
68
(
2013
).
24.
R.
Rachbauer
,
D.
Holec
, and
P.
Mayrhofer
,
Surf. Coat. Technol.
211
,
98
(
2012
).
25.
F.
Klimashin
and
P.
Mayrhofer
,
Scr. Mater.
140
,
27
(
2017
).
26.
K.
Balasubramanian
,
S. V.
Khare
, and
D.
Gall
,
Acta Mater.
152
,
175
(
2018
).
27.
S.
Kiani
,
C.
Ratsch
,
A.
Minor
,
S.
Kodambaka
, and
J.-M.
Yang
,
Philos. Mag.
95
,
985
(
2015
).
28.
M.
Mayer
,
AIP Conf. Proc.
475
,
541
(
1999
).
29.
E.
Broitman
,
Tribol. Lett.
65
,
23
(
2016
).
30.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
31.
E.
Broitman
and
F. J.
Flores-Ruiz
,
J. Vac. Sci. Technol. A
33
,
043201
(
2015
).
32.
D.
Gall
,
S.
Kodambaka
,
M.
Wall
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
93
,
9086
(
2003
).
33.
W.
Lee
and
K.
Lagerlof
,
Microsc. Res. Technique
2
,
247
(
1985
).
34.
D.
Shinohara
and
S.
Fujita
,
Jpn. J. Appl. Phys.
47
,
7311
(
2008
).
35.
D. G.
Sangiovanni
,
A. B.
Mei
,
L.
Hultman
,
V.
Chirita
,
I. G.
Petrov
, and
J. E.
Greene
,
J. Phys. Chem. C
120
,
12503
(
2016
).
36.
H.
Kindlund
,
J.
Lu
,
J.
Jensen
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
31
,
040602
(
2013
).
37.
H.
Kindlund
,
D. G.
Sangiovanni
,
J.
Lu
,
J.
Jensen
,
V.
Chirita
,
I.
Petrov
,
J. E.
Greene
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
32
,
030603
(
2014
).
38.
D. G. Sangiovanni, “Nanostructure and mechanical properties of VMoN coatings upon annealing” (unpublished).
39.
W.
Yim
and
R.
Paff
,
J. Appl. Phys.
45
,
1456
(
1974
).
40.
I.
Petrov
,
P.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
21
,
S117
(
2003
).
41.
E.
Broitman
,
Friction
2
,
40
(
2014
).
42.
A. C.
Fischer-Cripps
,
Nanoindentation
(
Springer
,
2004
).
43.
C. S.
Shin
,
D.
Gall
,
N.
Hellgren
,
J.
Patscheider
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
93
,
6025
(
2003
).
44.
A. B. Mei et al. (unpublished).
45.
W.
Meng
and
G.
Eesley
,
Thin Solid Films
271
,
108
(
1995
).
46.
M.
Odén
,
H.
Ljungcrantz
, and
L.
Hultman
,
J. Mater. Res.
12
,
2134
(
1997
).
You do not currently have access to this content.