A comparative study of mechanical properties and elemental and structural composition was made for aluminum nitride thin films deposited with reactive magnetron sputtering and plasma enhanced atomic layer deposition (PEALD). The sputtered films were deposited on Si (100), Mo (110), and Al (111) oriented substrates to study the effect of substrate texture on film properties. For the PEALD trimethylaluminum–ammonia films, the effects of process parameters, such as temperature, bias voltage, and plasma gas (ammonia versus N2/H2), on the AlN properties were studied. All the AlN films had a nominal thickness of 100 nm. Time-of-flight elastic recoil detection analysis showed the sputtered films to have lower impurity concentration with an Al/N ratio of 0.95, while the Al/N ratio for the PEALD films was 0.81–0.90. The mass densities were ∼3.10 and ∼2.70 g/cm3 for sputtered and PEALD AlN, respectively. The sputtered films were found to have higher degrees of preferential crystallinity, whereas the PEALD films were more polycrystalline as determined by x-ray diffraction. Nanoindentation experiments showed the elastic modulus and hardness to be 250 and 22 GPa, respectively, for sputtered AlN on the (110) substrate, whereas with PEALD AlN, values of 180 and 19 GPa, respectively, were obtained. The sputtered films were under tensile residual stress (61–421 MPa), whereas the PEALD films had a residual stress ranging from tensile to compressive (846 to −47 MPa), and high plasma bias resulted in compressive films. The adhesion of both films was good on Si, although sputtered films showed more inconsistent critical load behavior. Also, the substrate underneath the sputtered AlN did not withstand high wear forces as with the PEALD AlN. The coefficient of friction was determined to be ∼0.2 for both AlN types, and their wear characteristics were almost identical.

1.
S.
Strite
and
H.
Morkoç
,
J. Vac. Sci. Technol. B
10
,
1237
(
1992
).
2.
M.
Lakin
,
IEE Trans. Ultrason. Ferroelectr.
52
,
707
(
2005
).
3.
H.-C.
Seo
,
I.
Petrov
, and
K.
Kim
,
J. Electron. Mater.
39
,
1146
(
2010
).
4.
A. V.
Lobanova
,
E. V.
Yakovlev
,
R. A.
Talalaev
,
S. B.
Thapa
, and
F.
Scholz
,
J. Cryst. Growth
310
,
4935
(
2008
).
5.
S.
Stevens
,
A.
Ohtani
,
M.
Kinniburgh
, and
R.
Beresford
,
Appl. Phys. Lett.
65
,
321
(
1994
).
6.
F.
Hasegawa
,
T.
Takahashi
,
K.
Kubo
, and
Y.
Nannichi
,
Jpn. J. Appl. Phys.
26
,
1555
(
1987
).
7.
M.
Broas
,
P.
Sippola
,
T.
Sajavaara
,
V.
Vuorinen
,
A. P.
Perros
,
H.
Lipsanen
, and
M.
Paulasto-Kröckel
,
J. Vac. Sci. Technol. A
34
,
041506
(
2016
).
8.
V.
Rontu
,
P.
Sippola
,
M.
Broas
,
G.
Ross
,
T.
Sajavaara
,
H.
Lipsanen
,
M.
Paulasto-Kröckel
, and
S.
Franssila
,
J. Vac. Sci. Technol. A
36
,
021508
(
2018
).
9.
Q.-P.
Wei
,
X.-W.
Zhang
,
D.-Y.
Liu
,
J.
Li
,
K.-C.
Zhou
, and
Z.-M.
Yu
,
Trans. Nonferr. Metal Soc.
24
,
2845
(
2014
).
10.
E.
Iborra
,
J.
Olivares
,
M.
Clement
,
L.
Vergara
,
A.
Sanz-Hervás
, and
J.
Sangrador
,
Sens. Actuators A: Phys.
115
,
501
(
2004
).
11.
I. C.
Oliveira
,
K. G.
Grigorov
,
H. S.
Maciel
,
M.
Massi
, and
C.
Otani
,
Vacuum
75
,
331
(
2004
).
12.
H. Y.
Liu
,
G. S.
Tang
,
F.
Zeng
, and
F.
Pan
,
J. Cryst. Growth
363
,
80
(
2013
).
13.
J. H.
Lee
,
W. M.
Kim
,
T. S.
Lee
,
M. K.
Chung
,
B.-K.
Cheong
, and
S. G.
Kim
,
Surf. Coat. Technol.
133–134
,
220
(
2000
).
14.
R. B.
Karabalin
,
M. H.
Matheny
,
X. L.
Feng
,
E.
Defaÿ
,
G.
Le Rhun
,
C.
Marcoux
,
S.
Hentz
,
P.
Andreucci
, and
M. L.
Roukes
,
Appl. Phys. Lett.
95
,
103111
(
2009
).
15.
B.-H.
Hwang
,
C.-S.
Chen
,
H.-Y.
Lu
, and
T.-C.
Hsu
,
Mater. Sci. Eng. A Struct.
325
,
380
(
2002
).
16.
S.-H.
Lee
,
J.-K.
Lee
, and
K. H.
Yoon
,
J. Vac. Sci. Technol. A
21
,
1
(
2003
).
17.
H.
Matsumoto
,
K.
Asai
,
N.
Kobayashi
,
S.
Nagashima
,
A.
Isobe
,
N.
Shibagaki
, and
M.
Hikita
,
Jpn. J. Appl. Phys.
43
,
8219
(
2004
).
18.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
19.
F.
Gao
,
S.
Arpiainen
, and
R. L.
Puurunen
,
J. Vac. Sci. Technol. A
33
,
010601
(
2015
).
20.
R. L.
Puurunen
,
J.
Saarilahti
, and
H.
Kattelus
,
ECS Trans.
11
,
3
(
2007
).
21.
J.
Jokinen
,
P.
Haussalo
,
J.
Keinonen
,
M.
Ritala
,
D.
Riihelä
, and
M.
Leskelä
,
Thin Solid Films
289
,
159
(
1996
).
22.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
23.
H.
Van Bui
,
F. B.
Wiggers
,
A.
Gupta
,
M. D.
Nguyen
,
A. A. I.
Aarnink
,
M. P.
de Jong
, and
A. Y.
Kovalgin
,
J. Vac. Sci. Technol. A
33
,
01A111
(
2015
).
24.
M.
Bosund
,
T.
Sajavaara
,
M.
Laitinen
,
T.
Huhtio
,
M.
Putkonen
,
V.-M.
Airaksinen
, and
H.
Lipsanen
,
Appl. Surf. Sci.
257
,
7827
(
2011
).
25.
A.
Pyymaki Perros
,
H.
Hakola
,
T.
Sajavaara
,
T.
Huhtio
, and
H.
Lipsanen
,
J. Phys. D Appl. Phys.
46
,
505502
(
2013
).
26.
P.
Motamedi
and
K.
Cadien
,
J. Cryst. Growth
421
,
45
(
2015
).
27.
H.
Altuntas
,
T.
Bayrak
,
S.
Kizir
,
A.
Haider
, and
N.
Biyikli
,
Semicond. Sci. Technol.
31
,
075003
(
2016
).
28.
L.
Kilpi
,
O. M. E.
Ylivaara
,
A.
Vaajajoki
,
J.
Malm
,
S.
Sintonen
,
M.
Tuominen
,
R. L.
Puurunen
, and
H.
Ronkainen
,
J. Vac. Sci. Technol. A
34
,
01A124
(
2016
).
29.
M.
Laitinen
,
M.
Rossi
,
J.
Julin
, and
T.
Sajavaara
,
Nucl. Instrum. Methods B
337
,
55
(
2014
).
30.
O. M. E.
Ylivaara
 et al,
Thin Solid Films
552
,
124
(
2014
).
31.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
32.
S.-R.
Jian
,
G.-J.
Chen
, and
T.-C.
Lin
,
Nanoscale Res. Lett.
5
,
935
(
2010
).
33.
Ioffe Institute
, “
New semiconductor materials, characteristics and properties
,” see http://www.ioffe.ru/SVA/NSM/Semicond/AlN/basic.html, accessed 7 February 2018.
34.
S.
Goerke
 et al,
Appl. Surf. Sci.
338
,
35
(
2015
).
35.
H. B.
Profijt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
31
,
01A106
(
2013
).
36.
ICSD
, see https://icsd.fiz-karlsruhe.de/ based on
H.
Schulz
and
K. H.
Thiemann
,
Solid State Commun.
23
,
815
(
1977
).
37.
X.-H.
Xu
,
H.-S.
Wu
,
C.-J.
Zhang
, and
Z.-H.
Jin
,
Thin Solid Films
388
,
62
(
2001
).
38.
H.
Cheng
,
Y.
Sun
,
J. X.
Zhang
,
Y. B.
Zhang
,
S.
Yuan
, and
P.
Hing
,
J. Cryst. Growth
254
,
46
(
2003
).
39.
C.-C.
Cheng
,
Y.-C.
Chen
,
H.-J.
Wang
, and
W.-R.
Chen
,
Jpn. J. Appl. Phys.
35
,
1880
(
1996
).
40.
M. A.
Moram
and
M. E.
Vickers
,
Rep. Prog. Phys.
72
,
036502
(
2009
).
41.
J. S.
Cherng
,
T. Y.
Chen
, and
C. M.
Lin
,
Thin Solid Films
519
,
6797
(
2011
).
42.
M.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
J. Cryst. Growth
335
,
51
(
2011
).
43.
D.
Riihelä
,
M.
Ritala
,
R.
Matero
,
M.
Leskelä
,
J.
Jokinen
, and
P.
Haussalo
,
Chem. Vapor Depos.
2
,
277
(
1996
).
44.
H.-Y.
Shih
,
W.-H.
Lee
,
W.-C.
Kao
,
Y.-C.
Chuang
,
R.-M.
Lin
,
H.-C.
Lin
,
M.
Shiojiri
, and
M. J.
Chen
,
Sci. Rep.
7
,
39717
(
2017
).
45.
L.
Kilpi
 et al,
J. Vac. Sci. Technol. A
36
,
01A122
(
2018
).
46.
See supplementary material at for the PEALD AlN films crystallite size data.

Supplementary Material

You do not currently have access to this content.