Low resistivity (∼100 μΩ cm) titanium nitride (TiN) films were obtained by plasma enhanced atomic layer deposition using tetrakis(dimethylamido)titanium and a nitrogen/argon plasma mixture. The impact of process parameters on film crystallinity, oxygen contamination, and electrical resistivity was studied systematically. A low background pressure during the plasma half-cycle was critical for obtaining low resistivity. The low resistivity films were highly crystalline, having (001) oriented columnar grains. Oxygen and carbon content was about 3% and 2%, respectively. The role of argon plasma in film properties is discussed. Plasma damage to thin dielectric films beneath the TiN layer was minimized by the low-pressure process. The authors suggest that electron scattering at grain boundaries is the dominant mechanism which determines the resistivity of the TiN films, thus obtaining large columnar grains is the key to obtaining low film resistivity.

1.
H. O.
Pierson
,
Handbook of Refractory Carbides and Nitrides
(
Noyes
,
NJ
,
1996
).
2.
C.
Fenouillet-Beranger
 et al.,
Solid State Electron.
53
,
730
(
2009
).
3.
H. C. M.
Knoops
,
L.
Baggetto
,
E.
Langeris
,
M. C. M.
van de Saden
,
J. H.
Klootwijk
,
F.
Roozeboom
,
R. A. H.
Niessen
,
P. H. L.
Notten
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
155
,
G287
(
2008
).
4.
C. J.
Brennan
,
C. M.
Neumann
, and
S. A.
Vitale
,
J. Appl. Phys.
118
,
045307
(
2015
).
5.
T.
Hayashida
 et al.,
Jpn. J. Appl. Phys.
49
,
04DA16
(
2010
).
6.
J. Y.
Kim
,
S.
Seo
,
D. Y.
Kim
,
H.
Jeon
, and
Y.
Kim
,
J. Vac. Sci. Technol. A
22
,
8
(
2004
).
7.
F.
Roozeboom
 et al.,
Thin Solid Films
504
,
391
(
2006
).
8.
L.
Assaud
,
K.
Pitzschel
,
M.
Hanbucken
, and
L.
Santinacci
,
ECS J. Solid State Sci.
3
,
P253
(
2014
).
9.
J.
Musschoot
,
Q.
Xie
,
D.
Deduytsche
,
S.
Van den Berghe
,
R. L.
Van Meirhaeghe
, and
C.
Detavernier
,
Microelectron. Eng.
86
,
71
(
2009
).
10.
T.
Hayashida
 et al.,
Jpn. J. Appl. Phys.
51
,
04DA05
(
2012
).
11.
M. G.
Kozodaev
,
Y. Y.
Lebedinskii
,
A. G.
Chernikova
,
S. N.
Polyakov
, and
A. M.
Markeev
,
Phys. Status Solidi A
214
,
1700056
(
2017
).
12.
K. E.
Elers
,
V.
Saanila
,
W. M.
Li
,
P. J.
Soininen
,
J. T.
Kostamo
,
S.
Haukka
,
J.
Juhanoja
, and
W. F. A.
Besling
,
Thin Solid Films
434
,
94
(
2003
).
13.
K. E.
Eleres
,
J.
Winkler
,
K.
Weeks
, and
S.
Marcus
,
J. Electrochem. Soc.
152
,
G589
(
2005
).
14.
S. B. S.
Heil
,
J. L.
van Hemmen
,
C. J.
Hodson
,
N.
Singh
,
J. H.
Klootwijk
,
F.
Roozeboom
,
M. C. M.
van de Saden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
25
,
1357
(
2007
).
15.
M.
Moriwaki
and
T.
Yamada
,
Jpn. J. Appl. Phys.
40
,
2679
(
2001
).
16.
V.
Miikkulainen
,
M.
Leskela
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
17.
E. T.
Norton
and
C.
Amato-Wierda
,
Chem. Mater.
13
,
4655
(
2001
).
18.
M.
Burke
,
A.
Blake
,
I. M.
Povey
,
M.
Schmidt
,
N.
Petkov
,
P.
Carolan
, and
A. J.
Quinn
,
J. Vac. Sci. Technol. A
32
,
031506
(
2014
).
19.
D. H.
Kim
,
Y. J.
Kim
,
J. H.
Park
, and
J. H.
Kim
,
Mater. Sci. Eng. C
24
,
289
(
2004
).
20.
G.
Cho
and
S. W.
Rhee
,
J. Vac. Sci. Technol. A
31
,
01A117
(
2013
).
21.
J. Y.
Kim
,
D. Y.
Kim
,
H. O.
Park
, and
H.
Jean
,
J. Electrochem. Soc.
152
,
G29
(
2005
).
22.
P.
Caubet
 et al.,
J. Electrochem. Soc.
155
,
H625
(
2008
).
23.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
NJ
,
2006
).
24.
C. D.
Wagner
,
W. N.
Riggs
,
L. E.
Davis
,
J. F.
Moulder
, and
G. E.
Mullenberg
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin-Elmer
,
MN
,
1979
).
25.
J.
Elam
,
M.
Schuisky
,
J.
Ferguson
, and
S.
George
,
Thin Solid Films
436
,
145
(
2003
).
26.
H. B.
Profijt
,
P.
Kudlacek
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Electrochem. Soc.
158
,
G88
(
2011
).
27.
G.
Cho
and
S. W.
Rhee
,
ECS J. Solid State Sci. Technol.
3
,
P185
(
2014
).
28.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
29.
H.
von Seefeld
,
N. W.
Cheung
,
M.
Maenpaa
, and
M. A.
Nicolet
,
IEEE Trans. Electron. Devices
27
,
873
(
1980
).
30.
R.
Kroger
,
M.
Eizenberg
,
C.
Marcadal
, and
L.
Chen
,
J. Appl. Phys.
91
,
5149
(
2002
).
31.
N.
Jiang
,
H. J.
Zhang
,
S. N.
Bao
,
Y. G.
Shen
, and
Z. F.
Zhou
,
Physica B
352
,
118
(
2004
).
32.
S.
Hufner
,
Photoelectron Spectroscopy: Principles and Applications
(
Springer
,
New York
,
2003
).
33.
H. B.
Profijt
,
S. E.
Potts
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
29
,
050801
(
2011
).
34.
H. B.
Profijt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
31
,
01A106
(
2013
).
35.
D.
Gall
,
S.
Kodambaka
,
M. A.
Wall
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
93
,
9086
(
2003
).
36.
L.
Hultman
,
J. E.
Sundgren
, and
J. E.
Greene
,
J. Appl. Phys.
66
,
536
(
1989
).
37.
J. E.
Greene
,
J. E.
Sundgren
,
L.
Hultman
,
I.
Petrov
, and
D. B.
Bergstrom
,
Appl. Phys. Lett.
67
,
2928
(
1995
).
38.
C.
Marcadal
,
M.
Eizenberg
,
A.
Yoon
, and
L.
Chen
,
J. Electrochem. Soc.
149
,
C52
(
2002
).
39.
J. S.
Chun
,
J. R. A.
Carlsson
,
P.
Desjardins
,
D. B.
Bergstrom
,
I.
Petrov
,
J. E.
Green
,
C.
Lavoie
,
C.
Carbal
, and
L.
Hultman
,
J. Vac. Sci. Technol. A
19
,
182
(
2001
).
40.
D. M.
Hausmann
and
R. G.
Gordon
,
J. Crystal Growth
249
,
251
(
2003
).
41.
R. L.
Puurunen
,
T.
Sajavaara
,
E.
Santala
,
V.
Miikkulainen
,
T.
Saukkonen
,
M.
Laitinen
, and
M.
Leskela
,
J. Nanosci. Nanotechnol.
9
,
8101
(
2011
).
42.
V.
Cimalla
 et al.,
Mater. Sci. Appl.
5
,
47507
(
2014
).
43.
M. A.
Lieberman
, and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
NJ
,
2005
).
44.
N.
Mosleh
,
F.
Meyer
,
C.
Schwebel
,
C.
Pellet
, and
M.
Eizenberg
,
Thin Solid Films
246
,
30
(
1994
).
45.
T.
Faraz
 et al.,
ACS Appl. Mater. Interfaces
10
,
13158
(
2018
).
46.
T.
Takagi
,
J. Vac. Sci. Technol. A
2
,
382
(
1984
).
47.
I.
Krylov
,
B.
Pokroy
,
D.
Ritter
, and
M.
Eizenberg
,
J. Appl. Phys.
119
,
054507
(
2016
).
You do not currently have access to this content.