In this study, VO2 films were deposited by thermal atomic layer deposition with vanadium oxytriisopropoxide as a vanadium precursor and deionized water as a reactant. Postdeposition annealing was performed in order to enhance the crystallinity of VO2 films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and transmission electron microscopy were used to characterize the physical and chemical properties of the as-deposited and annealed VO2 films. The results indicated that postdeposition annealing enhanced the crystallinity of the VO2 films and increased the area ratio of V4+. Finally, the electrical properties of the VO2 films were analyzed using a semiconductor parameter analyzer. The Ion/Ioff ratio increased from 102 to 104 during postdeposition annealing at 450 °C. There were also significant increases in the hysteresis window.

1.
G.
Müller
,
T.
Happ
,
M.
Kund
,
G.
Lee
,
N.
Nagel
, and
R.
Sezi
,
IEDM Technical Digest, IEEE International Electron Devices Meeting
,
San Francisco, CA
,
13–15 December 2004
(
IEEE
,
New York
,
2004
), p.
567
.
3.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater.
21
,
2632
(
2009
).
4.
H.
Jeon
,
J.
Park
,
W.
Jang
,
H.
Kim
,
C.
Kang
,
H.
Song
, and
H.
Seo
,
Appl. Phys. Lett.
104
,
151603
(
2014
).
5.
H.
Wong
,
H.
Lee
,
S.
Yu
,
Y.
Chen
,
Y.
Wu
,
P.
Chen
,
B.
Lee
,
F.
Chen
, and
M.
Tsai
,
Proc. IEEE
100
,
1951
(
2012
).
6.
J.
Zhou
,
K.
Kim
, and
W.
Lu
,
IEEE Trans. Electron Devices
61
,
1369
(
2014
).
7.
W.
Park
,
G.
Kim
,
J.
Seok
,
K.
Kim
,
S.
Song
,
M.
Lee
, and
C.
Hwang
,
Nanotechnology
21
,
1
(
2010
).
8.
M.
Lee
 et al.,
Adv. Mater.
19
,
73
(
2007
).
9.
M.
Lee
 et al.,
Adv. Mater.
19
,
3919
(
2007
).
10.
S.
Puthentheradam
,
D.
Schroder
, and
M.
Kozicki
,
Appl. Phys. A Mater. Sci.
102
,
817
(
2011
).
11.
E.
Linn
,
R.
Rosezin
,
C.
Kügeler
, and
R.
Waser
,
Nat. Mater.
9
,
403
(
2010
).
12.
W.
Lee
 et al.,
ACS Nano
6
,
8166
(
2012
).
13.
S.
Corr
,
D.
Shoemaker
,
B.
Melot
, and
R.
Seshadri
,
Phys. Rev. Lett.
105
,
056404
(
2010
).
14.
A.
Baikalov
,
Y.
Wang
,
B.
Shen
,
B.
Lorenz
,
S.
Tsui
,
Y.
Sun
,
Y.
Xue
, and
C.
Chu
,
Appl. Phys. Lett.
83
,
957
(
2003
).
15.
Y.
Jo
,
K.
Jung
,
J.
Kim
,
H.
Woo
,
J.
Han
,
H.
Kim
,
J.
Hong
,
J.
Lee
, and
H.
Im
,
Sci. Rep.
4
,
7354
(
2014
).
16.
S.
Nandi
,
X.
Liu
,
D.
Venkatachalam
, and
R.
Elliman
,
J. Phys. D Appl. Phys.
48
,
1
(
2015
).
17.
M.
Son
 et al.,
IEEE Electron Device Lett.
32
,
1579
(
2011
).
18.
N.
Shukla
,
A.
Thathachary
,
A.
Agrawal
,
H.
Paik
,
A.
Aziz
,
D.
Schlom
,
S.
Gupta
,
R.
Herbert
, and
S.
Datta
,
Nat. Commun.
6
,
1
(
2015
).
19.
B.
Wang
,
J.
Lai
,
E.
Zhao
,
H.
Hu
,
Q.
Liu
, and
S.
Chen
,
Opt. Eng.
51
,
074003
(
2012
).
20.
A.
Gentle
,
G.
Smith
, and
A.
Maaroof
,
Proc. SPIE
7041
,
70410J
(
2008
).
21.
H.
Wriedt
,
Bull. Alloy Phase Diagr.
10
,
271
(
1989
).
22.
S.
Shin
,
G.
Ham
,
H.
Jeon
,
H.
Park
,
W.
Jang
, and
H.
Jeon
,
Kor. J. Mater. Res.
23
,
405
(
2008
).
23.
F.
Werfel
,
G.
Dräger
, and
U.
Berg
,
Cryst. Res. Technol.
16
,
119
(
1981
).
24.
Y.
Zhou
,
X.
Chen
,
C.
Ko
,
Z.
Yang
,
C.
Mouli
, and
S.
Ramanathan
,
IEEE Electron Device Lett.
34
,
220
(
2013
).
You do not currently have access to this content.