The group 4 metals Ti, Zr, and Hf, which have similar chemical behaviors, were sputter-deposited on glass substrates at substrate temperatures of 70, 200, 300, 400, 500, and 600 °C by direct current magnetron sputtering using Ar as discharge gas. On the basis of the obtained cross-sectional and surface morphologies, crystallographic structures, and film properties, the structure zone model for sputter-deposited metal thin films was revisited and discussed. The x-ray diffraction measurements show that all Ti, Zr, and Hf thin films have a hexagonal close-packed structure with ⟨101⟩ or ⟨001⟩ preferred orientations. Scanning electron microcopy observations show tableland-like flat surfaces with dense, wide, columnar cross sections for Ti thin films and fine dome-shaped surfaces with fine columnar cross sections to tableland-like flat surfaces with wider columnar cross sections for Zr and Hf thin films. Atomic force microscopy also reveals changes from fine dome-shaped to flat surface morphologies. The quantitative data on the lattice strain, crystallite size, surface roughness, and electrical resistivity reduced to that of the bulk material were plotted both against the unnormalized and normalized substrate temperatures. The latter data plots show a smaller dispersion than the former ones. The lattice strain and reduced resistivity of all Ti, Zr, and Hf thin films display a sharp bend at a normalized temperature of ∼0.30–0.35. The film surface, cross-sectional morphologies, and film property changes display a clear transition from zones 1 to 2 through zone T. The data obtained in this paper are utilized to systematically explain the effectiveness and appropriateness of the use of the normalized substrate temperature to categorize the film structure, morphologies, and properties of thin films.

1.
D. W.
Hoffman
and
R. C.
McCune
,
Handbook of Plasma Processing Technologies
, edited by
S. M.
Rossnagel
,
J. J.
Cuom
, and
W. D.
Westwood
(
Noyes
,
Park Ridge
,
1989
), pp.
483
517
.
2.
W. D.
Westwood
,
Sputter Deposition
(
American Vacuum Society
,
New York
,
2003
), pp.
131
166
.
3.
E. S.
Machlin
,
Materials Science in Microelectronics I: The Relationships Between Thin Film Processing and Structure
(
Elsevier
,
Oxford
,
2005
), pp.
55
96
.
4.
J. A.
Thornton
and
D. W.
Hoffman
,
J. Vac. Sci. Technol.
14
,
164
(
1977
).
5.
T.
Oya
and
E.
Kusano
,
Thin Solid Films
517
,
5837
(
2009
).
6.
J. A.
Thornton
,
J. Vac. Sci. Technol.
11
,
666
(
1974
).
7.
J. A.
Thornton
,
Annu. Rev. Mater. Sci.
7
,
239
(
1977
).
8.
B. A.
Movchan
and
A. V.
Demchishin
,
Phys. Met. Metallogr.
28
,
83
(
1969
).
9.
J. A.
Thornton
,
J. Vac. Sci. Technol., A
4
,
3059
(
1986
).
10.
S.
Craig
and
G. L.
Harding
,
J. Vac. Sci. Technol.
19
,
205
(
1981
).
11.
R.
Messier
,
A. P.
Giri
, and
R. A.
Roy
,
J. Vac. Sci. Technol., A
2
,
500
(
1984
).
12.
C. R. M.
Grovenor
,
H. T. G.
Hentzell
, and
D. A.
Smith
,
Acta Metall.
32
,
773
(
1984
).
13.
P. B.
Barna
and
M.
Adamik
,
Thin Solid Films
317
,
27
(
1998
).
15.
S.
Mahieu
,
P.
Ghekiere
,
D.
Depla
, and
R.
De Gryse
,
Thin Solid Films
515
,
1229
(
2006
).
16.
P. J.
Kelly
and
R. D.
Arnell
,
J. Vac. Sci. Technol.
16
,
2858
(
1998
).
17.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol., A
21
,
S117
(
2003
).
18.
A.
Anders
,
Thin Solid Films
518
,
4087
(
2010
).
19.
J. A.
Thornton
and
D. W.
Hoffman
,
Thin Solid Films
171
,
5
(
1989
).
20.
H.
Windischmann
,
Crit. Rev. Solid State Mater. Sci.
17
,
547
(
1992
).
21.
A. J.
Detor
,
A. M.
Hodge
,
E.
Chason
,
Y.
Wang
,
H.
Xu
,
M.
Conyers
,
A.
Nicroo
, and
A.
Hamza
,
Acta Mater.
57
,
2055
(
2009
).
22.
R.
Daniel
,
K. J.
Martinschitz
,
J.
Keckes
, and
C.
Mitterer
,
Acta Mater.
58
,
2621
(
2010
).
23.
D.
Depla
and
B. R.
Braeckman
,
Thin Solid Films
604
,
90
(
2016
).
24.
G.
Abadias
, et al. 
J. Vac. Sci. Technol., A
36
,
020801
(
2018
).
25.
L.
Brewer
,
Lawrence Berkeley Laboratory Report No. 3720
,
1977
, p.
4
;
C.
Kittel
,
Introduction to Solid State Physics
, 8th ed. (
Wiley, Inc
.,
New Jersey
,
2005
), p.
50
.
26.
M. A.
Turchanin
and
P. G.
Agraval
,
Powder Metall. Met. Ceram.
47
,
26
(
2008
).
27.
J. L.
Murray
,
Bull. Alloy Phase Diagrams
2
,
197
(
1981
).
28.
H.
Okamoto
,
J. Phase Equilib.
18
,
672
(
1997
).
29.
CRC Handbook of Chemistry and Physics
, 95th ed., edited by
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2014
), pp.
12-41
12-42
.
30.
“Ti,” Powder Diffraction File, CARD No. 5-682, The International Centre for Diffraction Data, Newtown Square, PA.
31.
“Zr,” Powder Diffraction File, CARD No. 5-665, The International Centre for Diffraction Data, Newtown Square, PA.
32.
“Hf,” Powder Diffraction File, CARD No. 38-1478, The International Centre for Diffraction Data, Newtown Square, PA.
33.
V.
Chawla
,
R.
Jayaganthan
,
A. K.
Chawla
, and
R.
Chandra
,
Mater. Chem. Phys.
111
,
414
(
2008
).
34.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
(
1970
).
35.
J. S.
Agustsson
,
U. B.
Arnalds
,
A. S.
Ingason
,
K. B.
Gylfason
,
K.
Johnsen
,
S.
Olafsson
, and
J. T.
Gudmundsson
,
J. Phys.: Conf. Ser.
100
,
082006
(
2008
).
36.
B.
Lewis
and
D. S.
Campbell
,
J. Vac. Sci. Technol.
4
,
209
(
1967
).
37.
J. A.
Venables
,
J. Vac. Sci. Technol., B
4
,
870
(
1986
).
38.
L.
Abelmann
and
C.
Lodder
,
Thin Solid Films
305
,
1
(
1997
).
39.
Y. W.
Mo
,
J.
Kleiner
,
M. B.
Webb
, and
M. G.
Lagally
,
Phys. Rev. Lett.
66
,
1998
(
1991
).
40.
Y.-W.
Mo
,
J.
Kleiner
,
M. B.
Webb
, and
M. G.
Lagally
,
Surf. Sci.
268
,
275
(
1992
).
41.
A.
Pimpinelli
,
J.
Villain
, and
D. E.
Wolf
,
Phys. Rev. Lett.
69
,
985
(
1992
).
42.
Z.
Zhang
and
M. G.
Lagally
,
Science
276
,
377
(
1997
).
43.
L. G. V.
Briquet
,
T.
Wirtz
, and
P.
Philipp
,
J. Appl. Phys.
114
,
243505
(
2013
).
44.
G.
Vérité
,
F.
Willaime
, and
C.-C.
Fu
,
Solid State Phenom.
129
,
75
(
2007
).
45.
T.
Angsten
,
T.
Mayeshiba
,
H.
Wu
, and
D.
Morgan
,
New J. Phys.
16
,
015018
(
2014
).
46.
P. M.
Agrawal
,
B. M.
Rice
, and
D. L.
Thompson
,
Surf. Sci.
515
,
21
(
2002
).
47.
C. V.
Thompson
,
Annu. Rev. Mater. Sci.
30
,
159
(
2000
).
48.
49.
D.
Walton
,
J. Chem. Phys.
37
,
2182
(
1962
).
51.
J.
Moser
,
H.
Liao
, and
F.
Levy
,
J. Phys. D
23
,
624
(
1990
).
52.
CRC Handbook of Chemistry and Physics
, 95th ed., edited
W. M.
Haynes
(
CRC
,
Boca Raton, FL
,
2014
), pp.
4-125
4-127
.
53.
L.
Vitos
,
A. V.
Levente
,
H. L.
Ruban
,
H. L.
Skriver
, and
J.
Kollar
,
Surf. Sci.
411
,
186
(
1998
).
54.
B.-Q.
Fu
,
W.
Liu
, and
Z.-L.
Li
,
Appl. Surf. Sci.
255
,
9348
(
2009
).
55.
H.
Lüth
,
Solid Surfaces, Interfaces and Thin Films
, 6th ed. (
Springer-Verlag
,
Berlin/Heidelberg
,
2015
), pp.
85
104
.
56.
J.
Kollar
,
L.
Vitos
, and
B.
Johansson
,
Atomistic Aspects of Epitaxial Growth (NATO Science Series II)
, edited by
M.
Kotrla
,
N. I.
Papanicolaou
,
D.
Vvedensky
, and
L. T.
Wille
(
Springer
,
The Netherlands
,
2002
), pp.
327
335
.
57.
C.
Ratsch
and
J. A.
Venables
,
J. Vac. Sci. Technol., A
21
,
S96
(
2003
).
58.
F.-L.
Yang
,
R. E.
Somekh
, and
A. L.
Greer
,
Thin Solid Films
322
,
46
(
1998
).
59.
K.-H.
Ahn
,
S.
Baik
, and
S.-S.
Kim
,
J. Mater. Res.
17
,
2334
(
2002
).
60.
D. N.
Lee
,
J. Mater. Sci.
34
,
2575
(
1999
).
You do not currently have access to this content.