The geometries and energies of adsorption of up to five layers of water on the {111}, {110}, and {100} surfaces of stoichiometric UO2 and PuO2 are studied computationally with Hubbard U-corrected density functional theory within the periodic boundary condition framework. This work builds on their recent study of the surface-bound water monolayers [Tegner et al., J. Phys. Chem. C 121, 1675 (2017)], and the water geometries within this first layer are used as the starting point for the present calculations. Significant variations are found in the per-layer adsorption energies, as a result of differing extents of intra- and interlayer hydrogen bonding. After the adsorption of several additional layers, the effect of the surface-bound water geometries diminishes, and the average adsorption energy per water molecule is ca. 0.5–0.6 eV (similar to that in bulk water), irrespective of the surface.

1.
J. P. W.
Wellington
,
A.
Kerridge
,
J.
Austin
, and
N.
Kaltsoyannis
,
J. Nucl. Mater.
482
,
124
(
2016
).
2.
B. E.
Tegner
,
M.
Molinari
,
A.
Kerridge
,
S. C.
Parker
, and
N.
Kaltsoyannis
,
J. Phys. Chem. C
121
,
1675
(
2017
).
3.
J. P. W.
Wellington
,
B. E.
Tegner
,
J.
Collard
,
A.
Kerridge
, and
N.
Kaltsoyannis
,
J. Phys. Chem. C
122
,
7149
(
2018
).
4.
H. E.
Sims
,
K. J.
Webb
,
J.
Brown
,
D.
Morris
, and
R. J.
Taylor
,
J. Nucl. Mater.
437
,
359
(
2013
).
5.
L.
Vlcek
,
Z.
Zhang
,
M. L.
Machesky
,
P.
Fenter
,
J.
Rosenqvist
,
D. J.
Wesolowski
,
L. M.
Anovitz
,
M.
Predota
, and
P. T.
Cummings
,
Langmuir
23
,
4925
(
2007
).
6.
L.-M.
Liu
,
C.
Zhang
,
G.
Thornton
, and
A.
Michaelides
,
Phys. Rev. B
82
,
161415(R)
(
2010
).
7.
R.
Mu
,
Z-J
Zhao
,
Z.
Dhonálek
, and
J.
Gong
,
Chem. Soc. Rev.
46
,
1785
(
2017
).
8.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
9.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
10.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
11.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
12.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
13.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
14.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
16.
S. L.
Dudarev
,
D.
Nguyen Manh
, and
A. P.
Sutton
,
Philos. Mag., Part B
75
,
613
(
1997
).
17.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467(R)
(
1995
).
18.
X.-D.
Wen
,
R. L.
Martin
,
T. M.
Henderson
, and
G. E.
Scuseria
,
Chem. Rev.
113
,
1063
(
2013
).
19.
J. T.
Pegg
,
X.
Aparicio-Anglès
,
M.
Storr
, and
N. H.
de Leeuw
,
J. Nucl. Mater.
492
,
269
(
2017
).
20.
J.
Schoenes
,
J. Appl. Phys.
49
,
1463
(
1978
).
21.
T. M.
McCleskey
 et al,
J. Appl. Phys.
113
,
013515
(
2013
).
22.
Z.
Rák
,
R. C.
Ewing
, and
U.
Becker
,
Surf. Sci.
608
,
180
(
2013
).
23.
K.
Momma
and
F.
Izumi
,
J. Appl. Cryst.
44
,
1272
(
2011
).
24.
T.
Bo
,
J.-H.
Lan
,
Y.-L.
Zhao
,
Y.-J.
Zhang
,
C.-H.
He
,
Z.-F.
Chai
, and
W.-Q.
Shi
,
J. Nucl. Mater.
454
,
446
(
2014
).
25.
T.
Bo
,
J.-H.
Lan
,
Y.-L.
Zhao
,
Y.-J.
Zhang
,
C.-H.
He
,
Z.-F.
Chai
, and
W.-Q.
Shi
,
Surf. Sci.
644
,
153
(
2016
).
26.
M.
Molinari
,
S. C.
Parker
,
D. C.
Sayle
, and
M. S.
Islam
,
J. Phys. Chem. C
116
,
7073
(
2012
).
27.
D. T.
Chaopradith
,
D. O.
Scanlon
, and
C. R. A.
Catlow
,
J. Phys. Chem. C
119
,
22526
(
2015
).
28.
B.
Hou
,
S.
Kim
,
T.
Kim
,
J.
Kim
,
S.
Hong
,
C. B.
Bahn
,
C.
Park
, and
J. H.
Kim
,
Sci. Rep.
6
,
27916
(
2016
).
29.
S.
Brunauer
,
P. H.
Emmet
, and
E.
Teller
,
J. Am. Chem. Soc.
60
,
309
(
1938
).
30.
D. B.
Asay
and
S. H.
Kim
,
J. Phys. Chem. B
109
,
16760
(
2005
).
31.
J.
Ireta
,
J.
Neugebauer
, and
M.
Scheffler
,
J. Phys. Chem. A
108
,
5692
(
2004
).
32.
M.
Huš
and
T.
Urbic
,
J. Chem. Phys.
136
,
144305
(
2012
).
33.
See supplementary material at https://doi.org/10.1116/1.5028210 for tabulated adsorption energies and additional adsorption geometries.

Supplementary Material

You do not currently have access to this content.