The authors demonstrate that complex hydrofluorocarbon (HFC) precursors offer significant advantages relative to gas mixtures of comparable elemental ratios for plasma-based selective atomic layer etching (ALE). This work compares mixtures of a fluorocarbon precursor and H2 with an HFC precursor, i.e., mixtures of octafluorocyclobutane (C4F8) with H2 and 3,3,3-trifluoropropene (C3H3F3), for SiO2 ALE and etching of SiO2 selective to Si3N4 or Si. For continuous plasma etching, process gas mixtures, e.g., C4F8/H2, have been employed and enable highly selective material removal based on reduction of the fluorine content of deposited steady-state HFC films; however this approach is not successful for ALE since hydrogen-induced etching reduces the thickness of the ultrathin HFC passivation layer which is required for both etching of SiO2 and passivation of the Si3N4 and Si underlayers, leading to lower materials etching selectivity. Conversely, the experimental results show that C3H3F3-based ALE enables ultrahigh ALE selectivity of SiO2 over Si3N4 and Si. The hydrogen in the precursor structure allows to reduce the fluorine content of the deposited HFC film without suppressing the formation of the passivation layer on the surface. Gas pulsing of complex reactive precursors in ALE provides the prospect of utilizing the precursor chemical structure for achieving high materials selectivity in ALE.
Skip Nav Destination
Achieving ultrahigh etching selectivity of SiO2 over Si3N4 and Si in atomic layer etching by exploiting chemistry of complex hydrofluorocarbon precursors
Article navigation
July 2018
Letter|
June 04 2018
Achieving ultrahigh etching selectivity of SiO2 over Si3N4 and Si in atomic layer etching by exploiting chemistry of complex hydrofluorocarbon precursors
Kang-Yi Lin;
Kang-Yi Lin
Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland
, College Park, Maryland 20740
Search for other works by this author on:
Chen Li;
Chen Li
Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland
, College Park, Maryland 20740
Search for other works by this author on:
Sebastian Engelmann;
Sebastian Engelmann
IBM T. J. Watson Research Center
, Yorktown Heights, New York 10598
Search for other works by this author on:
Robert L. Bruce;
Robert L. Bruce
IBM T. J. Watson Research Center
, Yorktown Heights, New York 10598
Search for other works by this author on:
Eric A. Joseph;
Eric A. Joseph
IBM T. J. Watson Research Center
, Yorktown Heights, New York 10598
Search for other works by this author on:
Dominik Metzler;
Dominik Metzler
IBM Semiconductor Technology Research
, 257 Fuller Road, Albany, New York 12203
Search for other works by this author on:
Gottlieb S. Oehrlein
Gottlieb S. Oehrlein
a)
Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland
, College Park, Maryland 20740
Search for other works by this author on:
a)
Electronic mail: oehrlein@umd.edu
J. Vac. Sci. Technol. A 36, 040601 (2018)
Article history
Received:
April 13 2018
Accepted:
May 11 2018
Citation
Kang-Yi Lin, Chen Li, Sebastian Engelmann, Robert L. Bruce, Eric A. Joseph, Dominik Metzler, Gottlieb S. Oehrlein; Achieving ultrahigh etching selectivity of SiO2 over Si3N4 and Si in atomic layer etching by exploiting chemistry of complex hydrofluorocarbon precursors. J. Vac. Sci. Technol. A 1 July 2018; 36 (4): 040601. https://doi.org/10.1116/1.5035291
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00